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[1] Simulating land surface hydrological states and fluxes requires a comprehensive set of
atmospheric forcing data at consistent temporal and spatial scales. At the continental-to-
global scale, such data are not available except in weather reanalysis products.
Unfortunately, reanalysis products are often biased due to errors in the host weather
forecast model. This paper explores whether the error in model predictions of the initial
soil moisture status and hydrological fluxes can be minimized through a bias reduction
scheme to the European Centre for Medium Range Weather Forecast and National Center
for Environmental Prediction/National Center for Atmospheric Research reanalysis
products. The bias reduction scheme uses both difference and ratio corrections based upon
global observational data sets. Both the corrected and original forcing data were used to
simulate land surface states and fluxes with a land surface model (LSM) over North
America. Soil moisture, snow depth, and runoff output from the LSM are compared to
observations to assess the impact of the bias correction on simulation accuracy. Results of
this study demonstrate the sensitivity of LSMs to bias in the forcing data, and that
implementation of a bias reduction scheme reduces errors to the simulation of soil
moisture, runoff, and snow water equivalence. Accordingly, the initial soil moisture fields
produced should be more representative of actual conditions, and therefore more useful
to the climate modeling community. Results suggest that modelers using reanalysis
products for forcing LSMs, in particular for the establishment of initial conditions, should
consider a bias reduction strategy when preparing their input forcing fields. INDEX
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1. Introduction

[2] After sea surface temperature, land surface soil mois-
ture is the most important atmospheric boundary condition
impacting climate [Dirmeyer et al., 1999], and numerous
studies [e.g., Oglesby, 1991; Atlas et al., 1993; Bounouna
and Krishnamurti, 1993a, 1993b; Delworth and Manabe,
1993; Xue and Shukla, 1993;Milly and Dunne, 1994; Koster
and Suarez, 1996a; Fennessy and Shukla, 1999; Douvill and
Chavin, 2000; Ducharne and Laval, 2000; Koster et al.,
2000a] have demonstrated the sensitivity of climate model
simulations to soil moisture initialization. Given the impor-
tance of the soil moisture state for weather and climate
prediction, numerous studies have identified techniques to

observe soil moisture from remote sensing platforms [Owe
and Van de Griend, 1998; Jackson et al., 1999; Rodell and
Famiglietti, 1999; Owe et al., 2001], or produce data sets of
initial land surface soil moisture for use in General Circu-
lation Model (GCM) simulations of weather or climate
[Dirmeyer et al., 1999].
[3] Unfortunately, microwave remote sensing of soil

moisture will provide information for only the top few
centimeters and will be limited to areas of low to moderate
vegetation foliage [Njoku and Entekhabi, 1996]. Therefore
any attempt to produce a large-scale soil moisture data set
must be realized through modeling only (over regions where
data are not available) and where data are available through
modeling with data assimilation strategies [e.g., Houser et
al., 1998; Reichle et al., 2001; Walker and Houser, 2001;
Walker et al., 2001]. Hence a prerequisite for accurate
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simulations of the energy and mass fluxes between the
atmosphere and land surface is comprehensive data sets of
land surface and atmospheric properties. Despite great
improvements to weather forecast models and to observation
systems, the necessary atmospheric information over large
areas of the globe is not available at the temporal and spatial
scales required by the majority of land surface parameteriza-
tion schemes. Thus over these regions, reanalysis products
mayoffer theonlysourceof thenecessaryclimate information.
[4] Global weather forecast models, observational data

streams, observation retrieval algorithms, and data assimi-
lation techniques change with time, therefore, weather
forecasting centers periodically rerun their forecast system
with consistent models, observational data, and data assim-
ilation strategies producing a ‘‘reanalysis.’’ Although obser-
vations are assimilated into the reanalyses, model output
should be treated with skepticism because many of the
meteorological fields forecasted are only weakly con-
strained to model input [Kalnay et al., 1996]. Bias in
reanalysis products has been the subject of much research
[Betts et al., 1996, 1998a, 1998b, 1998c; Maurer et al.,
2001a, 2001b; Roads and Betts, 2000], and hence using
reanalysis forcing to drive offline land surface models
(LSMs) can result in unrealistic estimates of energy, mass,
and momentum exchanges between the land and atmo-
sphere [Lenters et al., 2000; Maurer et al., 2001a].
[5] Recognizing the existence of errors in the reanalysis

products and their potential to impact offline LSM simula-
tions, this paper presents a simple methodology for bias
correction of reanalysis products. The bias correction meth-
odology is applied to the European Centre forMediumRange
Weather Forecasts (ECMWF) 15-year reanalysis (ERA)
[Gibson et al., 1997] and to the National Center for Environ-
mental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis (NRA) [Kalnay et al., 1996].
The sensitivity of the bias correction scheme is assessed for
large-scale soil moisture prediction over the North American
continent. Further, the necessity of the bias correction is
examined through comparisons with simulation results and
observations from the Mississippi River basin. Simulations
completed with each of the reanalysis products and the
corrected reanalysis products are compared to runoff, soil
moisture, and snowwater equivalence (SWE) observations to
highlight potential improvements to land surface simulation
accuracy due to the bias correction. The Mississippi
River basin is selected as the comparison region in this study
due to the availability of observational data sets and abun-
dance of previous studies [e.g.,Maurer et al., 2001a, 2001b;
Roads and Betts, 2000]. Results of this study have implica-
tions for the sensitivity of land surface parameterization
schemes to differences and errors in input forcing, and hence
for the use of reanalysis products as forcing in uncoupled
simulations of land surface energy and mass exchange.

2. Models and Data Sets

2.1. Catchment-Based Land Surface Model

[6] This study makes use of the catchment-based LSM
(CLSM) developed by Koster et al. [2000b]. The CLSM
requires atmospheric forcing (short and longwave downwel-
ling radiations, convective and total precipitation, 2-m air and
dew point temperatures, 10-m wind speed, and surface

pressure) together with surface parameter descriptions (veg-
etation type, height, greenness, leaf area index, roughness
length at the surface, albedo, and the soil hydrologic proper-
ties) to perform calculations of soil water content, SWE,
runoff, evapotranspiration, surface temperature, and the sen-
sible and latent heat fluxes. A detailed model description is
provided byKoster et al. [2000b] andDucharne et al. [2000].
[7] Based in part on earlier work by Famiglietti and

Wood [1991, 1994] and Stieglitz et al. [1997], an important
feature of this LSM is the representation of spatially varying
topography to allow for the parameterization of downslope
flow and spatial variability in soil moisture, runoff, and
surface fluxes. An important and unique feature of this
model is the discretization of the land surface into water-
sheds (examples of the catchments over the Mississippi
River basin are shown in Figure 1). Thus catchments form
the fundamental computational element rather than the
standard atmospheric grid.
[8] The energy balance equations of the CLSM closely

follow those of Koster and Suarez [1992, 1996b], which are
based on the Simple Biosphere (SiB) model of Sellers et al.
[1986]. Vegetation types are specified to one of the eight types
defined in the Mosaic LSM [Koster and Suarez, 1996b]. The
snow model coupled to the CLSM parallels that of Lynch-
Stieglitz [1994] and its interaction with the simulated water
and energy balance is described by Stieglitz et al. [2001].

2.2. European Centre for Medium-Range Weather
Forecasts and National Centers for Environmental
Prediction/National Center for Atmospheric Research
Reanalyses

[9] The ECMWF produced a 15-year reanalysis for the
period 1979–1993 archived every 6 hours [Gibson et al.,

Figure 1. Catchment representation is shown over the
Mississippi River above Vicksburg, Mississippi. Catch-
ments used for the comparisons of snow depths over the
northern portion of the basin are lightly shaded. The inset
illustrates the soil moisture sampling stations within Illinois
and the catchments (also lightly shaded) used for compar-
isons with the Illinois station data.
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1997]. The forecast model includes 31 vertical levels and
has a horizontal resolution of N80 (which corresponds to an
approximate resolution of 1.125�). Differences between the
ERA and observations are discussed by Betts et al. [1998a,
1998b, 1998c], Roads and Betts [2000], and summarized in
section 4.1.
[10] The NRA is a long-term reanalysis (1948 to present)

archived every 6 hours with a resolution of T62 (which
corresponds to an approximate resolution of 1.875�)
[Kalnay et al., 1996]. There are several well-known defi-
ciencies within the NRA model output including: a large
overestimation of precipitation over the Mississippi basin, a
consistent overestimation of evapotranspiration, and an
underprediction of snow [Maurer et al., 2001a]. Further
comparisons between the NRA and observations are dis-
cussed by Betts et al. [1996], Maurer et al. [2001a, 2001b],
Roads and Betts [2000], and summarized in section 4.1.

2.3. Observation-Based Data Sets

[11] We compiled two categories of data sets for use in
this study. These include the global climate observations
(temperature, precipitation, and radiation) used for the
correction of the reanalysis products and surface hydrologic
data used for comparison with CLSM simulations. Initial
discussion is focused on the data sets assembled for bias
correction of the reanalysis fields. Table 1 is a summary of
the data sets used in this study.
[12] Bias correction of reanalysis 2-m air temperatures

was made with an average of two data sets: the extended
version (1.01) of Legates and Willmott [1990] and the
Climate Research Unit half-degree (CRU-05) temperature
grid [New et al., 2000]. The resolution for both data sets is
global at 0.5�. Key distinctions between the two data sets
include data sources and interpolation methodologies.
[13] Bias correction of reanalysis short and longwave

radiations was performed to the Langley 8-Year Surface
Radiation Budget (SRB) developed by the Radiation Sci-
ences Branch of the Atmospheric Sciences Division at
NASA’s Langley Research Center [Gupta et al., 1999].
[14] Monthly mean downward and net radiation at the

surface is divided into two spectral regions, shortwave
(0.2–5.0 mm) and thermal longwave (5–50 mm). The

SRB data set, which spans the period July 1983–June
1991, is model derived, based on observations from the
International Satellite Cloud Climatology Project (ISCPP)
[Gupta et al., 1999].
[15] Reanalysis precipitation was corrected to the Global

Precipitation Climatology Project (GPCP) Version 2 Com-
bined Precipitation Data set developed by the NASA God-
dard Space Flight Center’s Laboratory for Atmospheres
[Huffman et al., 1997]. The GPCP spans the period January
1979-present on a 2.5� � 2.5� grid. Precipitation estimates
derived from low-orbit-satellite microwave sensors, geosyn-
chronous-orbit-satellite infrared sensors, and rain gauges
were used to create the data set [Huffman et al., 1997].
[16] For the comparison of CLSM simulations with

observations, data sets were obtained for soil moisture,
runoff, and SWE for regions within the Mississippi River
basin. A data set of soil moisture observations taken over
the state of Illinois [Hollinger and Isard, 1994] was
obtained through the Global Soil Moisture Databank
[Robock et al., 2000]. The Illinois soil moisture data set
includes observations obtained from 19 sites. The observa-
tions are either biweekly (March–September) or monthly
(October–February) for 11 depths (0–10, 10–30, 30–50,
50–70, 70–90, 90–110, 110–130, 130–150, 150–170,
170–190, and 190–200 cm). To compare the soil moisture
observations with the CLSM generated root zone soil
moisture (top 1 m), the average moisture content in the
top 100 cm of soil was determined for a group of measure-
ment stations in southern Illinois (see inset of Illinois in
Figure 1). These stations were selected as they are spread
among three contiguous catchments with at least two
stations for each catchment represented. Unfortunately, the
station records do not always follow a regular collection
interval, and periods of missing data are common. Therefore
a monthly average for the three-catchment region was
determined using all the available data.
[17] Further comparisons of CLSM water balance simu-

lations were examined for runoff and SWE. We compare
river runoff simulations to observations obtained from the
United States Geological Survey (USGS) for gauge
07289000 at Vicksburg, Mississippi. The catchments up-
stream of the Vicksburg stream gauge are shown in Figure 1.

Table 1. Observational Data Sets Used to Perform Bias Correction to the Reanalysis and to Compare Simulation Results With

Observationsa

Reanalysis Field Observed Data Set Used

Resolution

Temporal Spatial

Data Sets Used for Bias Correction of the Reanalysis
2-m Air temperature Climate Research Unit [New et al., 2000] monthly 1979–1993 0.5� � 0.5�

Center for Climatic Research [Legates and Willmott, 1990] monthly 1979–1993 0.5� � 0.5�
2-m Dew point temperatures Climate Research Unit [New et al., 2000] monthly 1979–1993 0.5� � 0.5�
Precipitation Global Precipitation Climatology Project

Version 2 [Huffman et al., 1997]
monthly 1979–1993 2.5� � 2.5�

Long and shortwave radiation Langley Eight Year Shortwave and Longwave
Surface Radiation Budget [Gupta et al., 1999]

monthly 1983–1991 1.0� � 1.0�

Hydrological Variable Observed Data Set Used

Resolution

Temporal Spatial

Data Sets Used for Comparisons With the Simulated Hydrologic Cycle
Soil moisture Illinois soil moisture [Hollinger and Isard, 1994] biweekly 1980–1996 19 locations in Illinois
Runoff U.S. Geological Survey Gauge 0728900 at Vicksburg, Mississippi daily 1979–1993
Snow depth SMMR derived snow depth [Chang, 1995] 1978–1987 0.5� � 0.5�

aNote that the time frames given here reflect those used in the bias correction and are not necessarily those of the actual data set.
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[18] Monthly CLSM simulations of SWE are compared
with observations from the Nimbus-7 Scanning Multichan-
nel Microwave Radiometer (SMMR) Derived Global Snow
Cover and Snow Depth Data set available from the National
Snow and Ice data center [Chang, 1995; Chang et al.,
1992]. For the SMMR period (November 1978 to August
1987), the data set is global in coverage on a 0.5� latitude by
0.5� longitude grid. The algorithm calculates snow depth by
considering the difference in brightness temperatures be-
tween the 37 and 18 GHz channels and assuming constant
snow density and grain size [Chang et al., 1987]. The
methodology works best over uniform regions such as the
Canadian high plains, as the signal can be impacted by
snow liquid water content, crystal size, snow depth, strat-
ification, surface roughness, snow density, snow tempera-
ture, soil moisture, and vegetation cover [Chang et al.,
1987]. Hence for comparisons with simulated SWE, only
catchments across the north of the Mississippi basin were
used (see Figure 1). In these catchments, observational
errors associated with high vegetation cover and complex
topography are expected to be minimal. Before comparisons
with simulated SWE the snow depth observations were
converted to SWE based on the snow density reported by
Chang et al. [1987]. It should also be noted that snow
depths calculated from SMMR are typically 10% lower than
estimates from earlier ground-based products, as microwave
sensors cannot detect snow less than 5 cm deep [Chang et
al., 1987].

3. Methods

[19] The necessary climate inputs into the CLSM are short
and longwave downwelling radiations, convective and total
precipitation, 2-m air and dew point temperatures, 10-m
wind speed, and surface pressure. The reanalysis products
supply the necessary data at 0000, 0600, 1200, and 1800 UT,
and the six hourly forcing data is interpolated by the CLSM
into 20-min time steps. The methodology of the bias
correction described in this section ensures that the neces-
sary climate inputs are in agreement with the observational
record at the monthly timescale. Problems with the diurnal
cycles and intramonthly variability were not considered in
this analysis, but should be addressed in future work.
[20] We describe two general types of bias correction:

(1) a difference-based scheme, that adds or subtracts the
estimated amount of bias from the affected forcing field and
(2) a ratio-based scheme, which multiplies the affected
forcing field by the ratio of monthly average reanalysis
value to the observation value. The choice of the bias
correction scheme was dependent on properties of the
forcing field. For the correction of temperature, we used a
difference-based approach to maintain the relative size of
the diurnal cycle. Here a ratio-based approach may overly
distort the size of the diurnal temperature range as recorded
in the six hourly observations. Where zero values occurred
in forcing fields (e.g., as in downwelling shortwave radia-
tion and precipitation) a ratio-based approach was selected
in order to obtain the monthly average without adding flux,
obtaining negative values, or changing statistics such as the
ratio of precipitation falling in one time period to the
monthly total. Discussion of possible improvements to
the approaches described below is included in section 5.

[21] Due to the limited availability of observational data
sets, the bias reduction scheme was applied only for 2-m air
and dew point temperatures, short and longwave downwel-
ling radiations, and convective and total precipitation.
Reanalysis-based surface pressure was adjusted to the
catchment elevation, but not corrected to an observational
product. We made no modifications to the wind speed. The
total amount of convective rainfall was adjusted to match
the ratio of convective to total precipitation predicted by
reanalysis product (convective precipitation is treated dif-
ferently in the CLSM than large-scale precipitation). Dis-
cussion below will focus on the interpolation procedures,
forcing production, and the CLSM sensitivity experiments.

3.1. Interpolation Methodology

[22] A unique feature of the catchment-based LSM of
Koster et al. [2000b] is the discretization of the land surface
into catchments. This model formulation requires that the
forcing data also be interpolated to the catchment space.
Interpolating grids to catchments follows the methodology
of Koster et al. [2000b] where the net flux (F) into
catchment b is computed by:

Fn ¼
P

g FgAbgP
g Abg

; ð1Þ

where Abg is fractional area of catchment bwithin grid cell g.
For interpolation of the reanalysis data (which are
considered as a sequence of nodes or grid points), we
defined a quasi-rectangular grid surrounding each node (the
quasi-rectangular grid corresponds to the reanalysis resolu-
tion of approximately 1.125� for the ECMWF and 1.875� for
NCEP-NCAR). Next, we determined the area of each grid
over the North American continent, and then interpolated the
defined grids into catchment space using equation (1).

3.2. Temperature and Dew Point
Temperature Corrections

[23] A single observational data set to bias correct the
reanalysis 2-m air temperature was constructed by merging
the 0.5� global mean monthly air temperature observations
of the Climate Research Unit [New et al., 2000] with the
extended version of Legates and Willmott [1990], by simply
averaging values from the two data sets. An elevation
correction was then applied to the grid data by adjusting
the observations, ERA and NRA 2-m air temperatures to sea
level temperature, following the environmental lapse rate
(6.5 K km�1) and their respective reference elevations. This
step is necessary to ensure that temperature differences due
to changes in elevation across the various data sets were not
included in the interpolation to catchment space. The
elevations of the 0.5� observational grids were derived from
TerrainBase 50 Global Digital Terrain Model [Row et al.,
1995], a 5-min digital elevation model (DEM) of the Earth.
The NRA and ERA grid points were reduced to sea level
from their recorded geopotential heights. After the lapse rate
correction, both observations and reanalysis data can be
interpolated to catchment space following equation (1).
[24] Next, we applied a difference-based correction to the

reanalysis fields as

Tai ¼ Ta Rð Þiþ Ta Oð Þ �

Xn

i¼1
Ta Rð Þi
n

" #
: ð2Þ
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[25] Here Tai is the 2-m bias reduced air temperature (�K)
at time step i, Ta(R)i is the 2-m reanalysis air temperature
(�K), Ta(O) is the average of the elevation reduced (shifted
to sea level) CRU-05 and Legates and Willmott’s [1990] 2-
m monthly average 0.5� air temperature observations (�K),
and n is the number of time steps in a given month.
[26] The final step involved elevating the bias-corrected

2-m air temperatures to the catchment elevation following
the environmental lapse rate where the catchment defini-
tions and mean elevations were previously determined
[Verdin and Verdin, 1999] from the 30-arc second digital
elevation model GTOPO30 [Gesch et al., 1999].
[27] To minimize bias in the reanalysis dew point temper-

atures, fields of average monthly relative humidity were
constructed from vapor pressure and temperature estimates
by New et al. [2000] and from the two reanalysis products.
We did not use the vapor pressures of New et al. [2000]
directly because in that study this field was classified as a
secondary variable, signifying that it has been estimated
using predictive relationships, and therefore we cannot
place greater certainty on the estimates of New et al. than
on the reanalysis products.
[28] Corrections to dew point temperatures were imple-

mented in the following way. First, monthly average relative
humidity was calculated for each of the reanalyses and the
data set of New et al. [2000], before implementing the lapse
rate elevation correction to monthly air temperature. From
the three (monthly average) relative humidity fields we
obtained an average, which was interpolated to catchment
space. Next, the monthly average relative humidity field
was used with air temperature observations (now corrected
for bias and elevation) to evaluate a monthly average dew
point temperature [following Jensen et al., 1990]. We could
then complete the bias correction to dew point temperature
identically to equation (2), substituting dew point temper-
atures (Td) for Ta. For catchments where monthly observed
dew points were higher than in the reanalysis, equation (2)
was solved iteratively to reproduce the monthly average
(Td(OBS)) while preventing Tdi from exceeding the
corresponding Tai.

3.3. Corrections to Longwave and Shortwave
Downwelling Radiations

[29] Bias correction to ERA and NRA short and long-
wave downward radiations was completed by a ratio-based
correction to the Langley Shortwave and Longwave SRB
data set [Gupta et al., 1999], which was interpolated to a 1�
� 1� grid and included as part of the Goddard Distribute
Active Archive Center Climatology Interdisciplinary Data
Collection. For the initial step in the bias correction, both of
the reanalysis products and the SRB observations were
interpolated to catchment space following equation (1).
[30] Next, a ratio-based bias correction to the reanalysis

shortwave downward radiation (S#) was completed as:

S #i¼
S # Oð ÞXn

i¼1
S # Rð Þi
n

 ! S # Rð Þi; ð3Þ

where S#(O) is observed monthly shortwave downward
radiation from the Langley SRB data set (W m�2), and

S#(R)i is shortwave downward radiation at the surface from
the reanalysis product (W m�2) at time i.
[31] To maintain consistency with the shortwave correc-

tion, an equation identical to equation (3) was applied for
the bias correction to the longwave downwelling radiation
(L#)

L #i¼
L # Oð ÞXn

i¼1
L # Rð Þi
n

 !L # Rð Þi: ð4Þ

[32] The methodology of the bias correction described in
this study is different from that used by the International
Satellite Land Surface Climatology Project (ISLSCP) Ini-
tiative 1 [Sellers et al., 1996], where the downwelling
shortwave radiation was calculated using the observed and
reanalysis net shortwave radiation (Snet) and albedo (a)
derived by the reanalysis as follows

S #i¼
Snet Oð ÞXn

i¼1
Snet Rð Þi
n

1� að Þ

0
BBB@

1
CCCA

� Snet Rð Þi
1� að Þ

 �
: ð5Þ

[33] This approach is problematic, particularly for the
bias correction of the ERA, since the winter albedo values
over the boreal forest regions of Canada were found to be
incorrect [Betts et al., 1998b]. A similar problem was
introduced into the bias correction to longwave surface
radiation in the methodology used by ISLSCP Initiative 1,
where a ratio-based bias correction was applied to the
net longwave radiation (Lnet), and the upward longwave
component was calculated based on the ERA surface
temperature (Ts(R)), the surface emissivity (0.996), and
the Stefan-Boltzmann constant (b) [Sellers et al., 1996]

L #i¼
Lnet Oð ÞXn

i¼1
Lnet Rð Þi
n

Lnet Rð Þiþ 0:996 bð Þ Ts Rð ÞiþTs Rð Þi�1

2

� �4
:

ð6Þ

[34] This approach introduces the possibility of bias to the
downwelling radiation in regions where surface temper-
atures are incorrectly forecast by the reanalysis products.

3.4. Corrections to Precipitation

[35] Total precipitation from the ERA and NRA was
corrected to the monthly observations from the GPCP
Version 2 Combined Precipitation Data Set [Huffman et
al., 1997]. Each of the data sets (GPCP and the reanalyses)
was interpolated to catchment space using equation (1) and
a ratio-based correction procedure applied

Pi ¼
PobsXn

i¼1
P Rð Þi
n

 !P Rð Þi; ð7Þ

where Pi is the bias-corrected catchment-based precipitation
(mm) at time i, and Pobs is the average monthly precipitation
observations from GPCP (mm).
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[36] Over several catchments, precipitation was recorded
in GPCP observations, but not in the reanalysis product over
the same month, thus making a ratio-based correction
impossible. To correct precipitation over these catchments,
a multiple logistic regression was performed using the
variables, relative humidity and cloud cover. The result of
the regression model is a coefficient representing the
probability of precipitation for the 6-hour reanalysis time
step. We could then apply precipitation over the catchment
for the time step with the highest probability at a rate
equivalent to the monthly median amount of 6-hourly
precipitation multiplied by the probability coefficient. This
process was repeated for the time step with the next highest
probability until the monthly shortfall of precipitation over
the catchment in question was overcome. Over a typical
year, the logistic equation was applied over less than 8% of
the total number of catchments. The final step in the
precipitation correction procedure was to adjust the amount
of convective precipitation to match the ratio of convective
to total precipitation originally forecast by the reanalysis
product.

3.5. Experimental Framework

[37] To evaluate the impact of the atmospheric forcing
bias correction on soil moisture prediction and hydrologic
flux simulation, the CLSM was run for the period 1985–
1991 using the corrected ERA (CERA), the corrected NRA
(CNRA), and the uncorrected versions of the ERA and the
NRA forcing (both of which were interpolated to catchment
space but otherwise unmodified). This time period was
selected to maximize the overlap of the available observa-
tional (the main constraint was the time period of the SRB
observations July 1983–June 1991) and reanalysis data
sets. It is important to distinguish between the CLSM
simulations driven with each of these forcing products,
hereafter called the ERA, CERA, NRA, and CNRA simu-
lations, in contrast to the fully coupled ERA and NRA
model results themselves.
[38] We completed all simulations using an identical

version of the CLSM and employing the same scheme for
initialization by model spin-up. During model spin-up, the
initial model states were determined by driving the model to
equilibrium for the beginning of 1985 through repeated
simulation of 1985. Therefore each simulation has a starting
position in climatological equilibrium with its own forcing
data, rather than beginning each simulation from an iden-
tical initial state. This decision was made to simulate the
initial state values modelers would obtain by considering
each of the forcing data sets independently, rather than a
composite of all the available information (this could also
be considered a typical scenario because few modeling
studies consider more than one forcing data set). Output
from the CLSM simulations for each of the forcing products
was then compared both to each other and to observations
for the time period 1985–1991.

4. Results and Discussion

4.1. Forcing Intercomparison

[39] In this section, we document differences between the
reanalysis products and the observational data sets incorpo-
rated into the bias correction. The purpose of this is not to

examine regional bias in the reanalysis products, as similar
analyses have already been carried out by a number of other
researchers [Betts et al., 1998a, 1998b, 1998c; Maurer et
al., 2001a, 2001b]. However, some discussion of the differ-
ences between the reanalysis products and observation–
based data sets is necessary to understand the impact of the
bias correction on modeling skill. Therefore Figures 2 and 3
present average seasonal DJF (December, January, February)
and JJA (June, July, August) differences (1985–1991)
between the reanalysis products and the observational data
sets incorporated into the bias correction.
[40] Differences between reanalysis air temperatures and

observations incorporated into the bias correction are illus-
trated in Figures 2, 3a, and 3b. For both reanalyses, differ-
ences are greatest during the winter period. For DJF the
ERA exhibits a large cold bias (illustrated as the large blue
region) that surrounds Hudson’s Bay. This bias, due to an
error with the modeled albedo [Betts et al., 1998b], dis-
appears after snowmelt in May. Further discussion of this
problem is presented by Betts et al. [1998b] and will not be
repeated here. In contrast, the NRA exhibits a slight warm
bias over this region during the same season, with a
considerable warm bias over the mountainous regions of
Alaska and Yukon Territory, Canada. Over mountainous
topography scale differences between ERA (approximately
1.125�), the NRA (1.875�), and the catchments (approxi-
mately 0.5�) are large; this results in considerable differ-
ences to temperature based on elevation differences (or
approximately 1�K for every 150-m difference in elevation).
Likely some of the bias in NRA observed over the Rocky
Mountains is due to scale differences, however, the indi-
vidual contribution from topography and bias effects was
not resolved.
[41] During the summer period, both reanalyses are closer

to observations, although ERA (NRA) temperatures are
positively (negatively) biased along the western portion of
the continent. In both reanalyses, the cause of some of these
discrepancies over the Rocky Mountains is due to the lapse
rate correction discussed above.
[42] In Figures 2c, 2d, 3c, and 3d, differences between the

reanalysis vapor pressure and the vapor pressure composite
are presented. For the reanalyses, differences are low in
winter, and in the ERA, low for both seasons. Although in
the ERA, the effects of the topographic lapse rate correction
may be evident in JJA over the Rocky Mountains. In
Figure 3d, JJA differences between the NRA and the vapor
pressure composite show much higher vapor pressures over
the Boreal forests of Canada, extending southward into the
southeast of the United States. This issue was addressed by
Betts et al. [1996], who compared First ISLSCP Field
Experiment (FIFE) data with NRA output. In their study,
mixing ratios in the NRA were found to be moister than
observations, particularly during the summer period. Over
the Southwest United States, vapor pressures in the NRA
are much lower than in the composite. This issue has not
been addressed in previous literature, but a full examina-
tion of the underlying causes for this bias is beyond the
scope of this paper.
[43] In Figures 2e–2h and 3e–3h, we present differences

between the SRB, and the ERA and NRA long and
shortwave downwelling radiations. For both reanalyses,
downwelling longwave (shortwave) radiation is underesti-
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Figure 2. Seasonal (DJF and JJA) differences between the ERA and observations incorporated (ERA-
observations) into the bias reduced forcing data set. Differences are for (a, b) air temperature (�C), (c, d)
vapor pressure (hPa), (e, f ) downwelling shortwave radiation (W m�2), (g, h) downwelling longwave
radiation (W m�2), and (i, j) ratio of precipitation differences to total precipitation.
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Figure 3. Seasonal (DJF and JJA) differences between the NRA and observations incorporated (NRA-
observations) into the bias reduced forcing data set. Differences are for (a, b) air temperature (�C), (c, d)
vapor pressure (hPa), (e, f ) downwelling shortwave radiation (W m�2), (g, h) downwelling longwave
radiation (W m�2), and (i, j) ratio of precipitation differences to total precipitation.
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mated (overestimated). The differences between ERA and
the SRB product, while high, are not out of the range, which
is discussed in the work of Wild et al. [1998] and Gupta et
al. [1999]. For the NRA, differences between the reanalysis
downwelling shortwave and the SRB product are larger
(approaching 40 W m�2 during the summer). Some dis-
cussion of this issue was presented by Betts et al. [1996],
where the overestimation of shortwave radiation was found
to be due to an overly transparent atmosphere and imperfect
coupling scheme between cloud and radiation. Subsequently,
on clear days downwelling shortwave radiation was up to
50 W m�2 higher than the FIFE station data [Betts et al.,
1998b].
[44] Figures 2i, 2j, 3i, and 3j display differences between

the reanalysis and GPCP precipitation. Here we have plotted
differences expressed as a ratio, where the difference
between the monthly reanalyses and observations is divided
by the observed total, thus normalizing the differences. This
was done to illustrate the magnitude of bias with respect to
the total amount of precipitation. For DJF, bias to ERA
precipitation is positive (ERA greater than observations
shown in red) over Rocky Mountains, and negative over
the northern Mississippi basin extending northward to
Hudson’s Bay. In the summer period, regions of positive
precipitation bias are observed over Alaska and in central
Mexico. Over regions with high precipitation gradients,
such as over the Rocky Mountains, bias in the reanalysis
estimates are most likely exaggerated due to low resolution
of the observational data set.
[45] In Figure 3i, positive bias in the NRA precipitation is

observed over the Rocky Mountains north of the United
States border, and a strong negative bias is observed in the
southeast United States. In JJA, a belt of high precipitation
bias is observed in the southeast United States extending
north and westward across the Boreal forests of Canada.
Bias in NRA precipitation is a well-known problem [e.g.,
Roads and Betts, 2000] and weaknesses to the precipitation
parameterization scheme have been addressed [e.g., Hong
and Pan, 1996] in subsequent reanalysis projects.

4.2. Simulations of Soil Moisture for the North
American Continent

[46] Average simulated root zone volumetric soil mois-
ture conditions for the JJA (1985–1991) period using the
ERA, CERA, NRA, and CNRA forcing are presented in
Figure 4. Overall, the patterns simulated by the ERA,
CERA, and CNRA simulations are very similar, with only
slight differences apparent over northwest Canada and
Alaska, while the ERA simulation was typically wetter than
both of the corrected simulations. As expected, regional
differences between the ERA and the corrected data sets
correspond to differences in the precipitation forcing. In
contrast to the ERA, CERA, and CNRA simulations, mean
summer soil moisture conditions predicted using the NRA
forcing are much wetter (due to the precipitation and vapor
pressure bias identified above). The regions of greatest
difference occur over the southeast United States and
extending northward and westward to the north of the Great
Plains. It is interesting to note that although the CERA and
CNRA simulations have identical monthly averages for air
and dew point temperatures, downwelling radiation fields,
and precipitation the CNRA simulation is slightly wetter

than both CERA and ERA simulations east of the hundredth
meridian and north over the Boreal forests of Canada
(identical to the region of high precipitation bias in the
NRA forcing). The reason for these differences is due to
variability between the CERA and CNRA at submonthly
and diurnal scales. The magnitude, seasonality, and impact
of these differences on hydrological simulations are pres-
ently under investigation.
[47] Although the overall soil moisture pattern was sim-

ilar for simulations completed with the ERA, CERA, and
CNRA forcing, more pronounced regional differences occur
over shorter periods and over different seasonal time frames
(as opposed to the 7 year averages shown in Figures 4a–4d).
To illustrate this point, in Figures 4e–4h we show average
root zone differences between the ERA and the CERA
(Figures 4e and 4f) and between NRA and CNRA (Figures
4g and 4h) for a single day (15 June 1987 and 15 June 1989).
In all four plots, the regions over which a sizable precipita-
tion bias was removed (areas greater than 0.5% or less than
�0.5% in Figures 2i, 2j, 3i, and 3j) are observable over both
dates. However, over regions of lower precipitation bias, the
differences between simulations completed with the uncor-
rected reanalysis and their corrected counterparts are unique,
suggesting different patterns of the initial soil moisture state.
This is significant because differences in the spatial patterns
of the initial soil moisture will affect climate prediction
[Dirmeyer, 2000].
[48] The magnitude of differences between the simulated

root zone soil moisture is also dependant upon the season of
simulation. In Figure 5, we show continental average
monthly (1985–1991) differences (for snow free catch-
ments) between simulations of root zone soil moisture for
the uncorrected (ERA and NRA) and corrected (CERA and
CNRA) forcing data. Differences between the CERA and
CNRA simulations are small (typically less than 1% cm3

cm�3 for all seasons), with the CNRA simulation slightly
wetter than the CERA simulation. In contrast, the differ-
ences between the ERA and CERA simulations, and the
NRA and CNRA simulations, are much greater with the
simulations from the noncorrected forcing data producing
much wetter conditions than those from the corrected
forcing data. Moreover, there are distinct seasonal cycles
in the overall magnitude of difference that peaks over the
winter period. In the discussion below, we will examine
more closely the reasons for these differences and implica-
tions on hydrological flux simulations through comparisons
with observations taken over the Mississippi River basin.

4.3. Comparison of Simulation Results With
Observations From the Mississippi River Basin

4.3.1. Comparisons to Illinois Soil Moisture
Observations
[49] To assess the improvement in simulated soil mois-

ture due to the bias correction, Figure 6 presents simulated
and observed root zone soil moisture for the catchments in
southern Illinois (see Figure 1). The correlation and Mean
Absolute Error (MAE) between observed and simulated
soil moisture (January 1985–July 1991) are presented in
Table 2. Overall, the ERA, CERA, and CNRA simulations
accurately represent the observed seasonal cycle (wet in
winter and early spring with a consistent dry down
throughout the summer) with identical levels of correlation
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and MAE calculated for the CERA and CNRA simulations.
The dry down during the late spring through summer months
is particularly well simulated. However, none of these
simulations responds quickly enough to the observed in-
crease in root zone soil moisture during the fall. Of the three
simulations, the ERA responds the slowest (corresponding
to the slightly lower levels of correlation and higher MAE).
In contrast to the ERA, CERA, and CNRA simulations,
correlations between the NRA simulation and observations
are much weaker, and simulated root zone soil moisture is

much higher than observed. Much of this difference can be
attributed to precipitation bias and low evaporation rates;
further discussion on this matter is presented below.
4.3.2. Comparisons to Observed Streamflow
[50] The observed seasonal runoff cycle (1985–July

1991) at Vicksburg Mississippi is compared to the four
simulations in Figure 7. The annual cycle is well repre-
sented by simulations using the ERA, CERA, and CNRA
forcing. Over the summer and fall periods, these simulations
were particularly good with MAEs than 0.05 mm d�1.

Figure 4. Average JJA (1985–1991) volumetric (cm3 cm�3) root zone soil moisture conditions for
simulations completed with (a) ERA, (b) CERA, (c) NRA, and (d) CNRA forcing. (e, f ) Differences
between the ERA and CERA root zone soil moisture are shown for 15 June 1987 and 15 June 1989 and
also (g, h) for the identical dates for differences between the NRA and CNRA.
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However, during the early spring runoff is overestimated in
all three of these simulations, with the ERA exhibiting the
most bias. For simulations completed with the NRA forcing,
runoff is significantly overestimated in the middle of the
year, with the peak being out of phase from observations.
[51] For the simulation of runoff using the CNRA forc-

ing, the bias correction (particularly to precipitation) acts to
bring the seasonal cycle of CNRA much closer to reality
(r = 0.68 versus 0.29 for the NRA simulation) and allows
for a much better approximation of the total runoff flux
(Table 2). For the NRA simulation, the timing of the runoff
peak (May and June) corresponds to the months of precip-
itation overestimation. Lenters et al. [2000] present similar
results for a study using the NRA forcing.
[52] Observed runoff is affected by the various water

management practices within the Mississippi River system
and the simulated results are impacted by the lack of a
streamflow routing methodology. Subsequently, correlations
between the modeled and observed runoff are expected to
increase if a suitable (catchment based) runoff routing

scheme is implemented [e.g., Oki et al., 1999]. Therefore
the results of the CERA and CNRA simulations are en-
couraging, as the total volume of flow generated from the
basin is in close agreement with observations (Table 2), and
months of excessive flow are followed by months of
underestimation (Figure 7).
4.3.3. Comparisons to Observed Snow Water
Equivalence
[53] Average observed and simulated SWE (1985–1987)

for the northern catchments of the Mississippi River basin
are shown in Figure 8 and summarized in Table 2. SWE
simulated by the CLSM with all of the forcing products are
much higher than the SMMR-based observations (although
SMMR SWE are typically 10% lower than ground-based
observations). In terms of the MAE, simulations using the
ERA forcing are higher than the CERA, CNRA, and NRA-
based simulations, often overestimating winter SWE by
over 100%. For all simulations, peak SWE tends to lag
behind observations. Overestimation of the snowpack and
rapid melt in the spring helps to explain the tendency for
runoff overestimation during the melt season, although
some of this error will be mitigated by the introduction of
a coupled runoff routing model.
4.3.4. Water Budget Comparisons for Mississippi
River Basin
[54] In an attempt to further elucidate the impact of the

bias correction on hydrological simulations, components of
the annual water budget are shown for the entire Mississippi
River basin in Figure 9. Differences between ERA and
NRA and GPCP precipitation are presented in Figure 9a.
Over the basin, monthly precipitation in the ERA follows
the GPCP observations closely for almost all months while

Figure 6. Simulated (CERA, ERA, NRA, and CNRA) and
observed (OBS) monthly average volumetric (cm3 cm�3)
soil moisture for three contiguous catchments in southern
Illinois (1985–1991).

Table 2. Statistical Comparisons of Each Model Simulation With

Observations of Soil Moisture, Runoff, and SWE Expressed in

Terms of Correlation and MAE

Observation Comparison CERA ERA CNRA NRA

Illinois root zone
soil moisture

MAE, cm3 cm�3 2.3% 2.6% 2.3% 3.0%
correlation 0.76 0.68 0.76 0.48

Mississippi runoff
(mean annual
flow 187 mm)

average annual flow 188 200 189 269
MAE, mm d�1 0.18 0.19 0.17 0.34
correlation 0.68 0.68 0.68 0.29

Snow depth MAE, mm mo�1 8.4 13.8 9.2 9.3
correlation 0.86 0.78 0.93 0.85

Figure 5. Average (1985–1991) root zone soil moisture
differences between the CERA-CNRA, ERA-CERA, and
NRA-CNRA simulations for all snow free catchments over
North America.

Figure 7. Simulated (CERA, ERA, NRA, and CNRA) and
observed (OBS) runoff (mm d�1) for the Mississippi River
at Vicksburg, Mississippi (1985–1991).
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in the NRA precipitation is greatly overestimated during the
summer months. Roads and Betts [2000] and Maurer et al.
[2001a, 2001b] report similar results.
[55] In Figure 9b, we present average monthly total soil

column moisture for each of the four simulations. In
contrast with the NRA simulation, the annual soil moisture
cycle is identical in shape for the ERA, CERA, and CNRA
simulations. The NRA simulation predicts peak soil mois-
ture in June, which coincides with the months of high
precipitation bias.
[56] Average evapotranspiration for the Mississippi River

basin above Vicksburg, Mississippi (see Figure 1), is
presented in Figure 9c. Evapotranspiration is greatest for
the CERA, CNRA, and ERA simulations and much lower
for the NRA simulation. When amounts of evapotranspira-
tion simulated by CLSM with each of the forcing products
are compared to the Roads and Betts [2000] study, we find
that the total amount of evapotranspiration produced from
the ERA, CERA, and CNRA simulations are similar to that
predicted by the ERA model. However, for the NRA
simulations, the situation is reversed and far less evapo-
transpiration (up to 1 mm d�1) was simulated than in the
fully coupled NRA [Roads and Betts, 2000; Lenters et al.,
2000; Maurer et al., 2001a, 2001b]. In comparisons with
FIFE data, Betts et al. [1996] found evapotranspiration in
the NRA to be suspect because evapotranspiration remained
near potential rates despite high relative humidity.
[57] Average (1985–1991) SWE over the Mississippi

River basin is presented in Figure 9d. Here the seasonal
cycle is similar for the CERA, CNRA, and NRA simula-
tions. In the ERA simulation, the overestimated SWE
persists later into the season (this trend was also observed
for SWE over the northern catchments of the Mississippi
River basin). Overall, the differences observed between the
ERA and CERA simulations are due to the temperature bias
correction. As illustrated in Figure 2a, there is a strong
temperature bias in the ERA data over the interior of the
continent extending southward over the northern portion of
the Mississippi River basin. Removal of this bias from the
ERA forcing allows for greater melt and subsequently lower

amounts of snow accumulation within the CERA simula-
tion. In the NRA simulation, the lower amount of SWE
observed may be due to lower than observed amounts of
winter season precipitation (November–February).
[58] Mississippi River runoff presented in Figure 9e is

identical to Figure 7 and is reproduced here for comparison
with the other hydrologic fluxes, and discussion here is
limited to comparisons between Figure 9e and the other
hydrologic variables discussed above. As previously
addressed, the bias corrected simulations and the ERA follow
the seasonal cycle closely, whereas runoff simulated with the
NRA forcing is not in phase with observations. In the ERA
simulation, too much runoff is observed over February and
March, this is due to higher SWE (Figure 9d), resulting from
the negative bias in wintertime temperature (see Figure 2a).
In the NRA, differences between the simulated and observed
runoff can be attributed to much lower evapotranspiration
and excess precipitation (Figure 9a) during the summer
months.

5. Summary and Conclusions

[59] One of the main difficulties in producing a large-
scale soil moisture data set is the lack of global, temporally
and spatially consistent forcing data from which to drive a
LSM. Reanalysis products can be used to supply the
necessary data, but studies have shown that they are often
biased due to errors in the weather models used to create
them. Hence the use of the raw reanalysis data to drive
LSMs offline will result in inaccurate predictions of the
initial state.
[60] In the present study, an attempt to minimize errors in

predictions of the initial soil moisture status is realized
through a bias reduction scheme to the reanalysis forcing.
The bias reduction scheme uses difference- and ratio-based
corrections to the NRA (NCEP/NCAR Reanalysis) and
ERA (ECMWF Reanalysis) with global observational data
sets. Bias corrections were included for the 2-m air and dew
point temperatures, short and longwave downwelling radi-
ations, and the precipitation forcing. The sensitivity of the

Figure 8. Simulated (CERA, ERA, NRA and CNRA) and observed (OBS) SWE for catchments across
the northern Mississippi River Basin (1985–1991).
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bias correction for initial soil moisture estimation is
assessed for simulations completed with the CLSM of
Koster et al. [2000b], using both the raw and corrected
versions of the ERA and NRA forcing.
[61] Overall, the average JJA root zone soil moisture

simulated with the ERA, CERA (corrected ERA), and
CNRA forcing had similar patterns over much of the North
American continent. The same general pattern was also
observed in the NRA simulation, but due to bias in the

precipitation field, root zone soil moisture conditions are
much wetter over the eastern United States extending
northward over the Boreal forests of Canada. It is the
removal of this bias in the CNRA forcing that accounts
for most of the difference between the CNRA and NRA
simulation results.
[62] Potential improvements to hydrological simulations

because of the bias correction are evaluated through com-
parisons with observations over the Mississippi River basin.
In comparisons with soil moisture, runoff, and SWE obser-
vations, the CERA and CNRA simulation results were
found to be in close agreement. In contrast, the simulations
produced with ERA and NRA forcing data are not always as
accurate. The precipitation and high humidity bias to the
NRA forcing leads to soil moisture and runoff estimations
that are out of phase with observations. Although the ERA
simulations of soil moisture are much closer to the CERA
and CNRA simulations, over winter the negative tempera-
ture bias perpetuates excess storage of snow, subsequently
producing overly high runoff volumes during the early
spring.
[63] This study has demonstrated that the implementation

of a simple bias reduction scheme reduces errors in
the simulation of soil moisture, runoff, and SWE. While
this is an encouraging result, there exists the possibility for
further improvement by refinement of the bias correction
procedures described above. Recent work by Berg and
Famiglietti [2003] demonstrates that despite the bias cor-
rection there will remain some uncertainty in the initial soil
moisture estimate. Of particular importance is treatment of
variability at the submonthly timescale. Therefore modifi-
cations to the procedures outlined above that incorporate
additional statistics such as wet day frequency or mean
minimum and maximum temperatures can improve the
forcing product described.
[64] Based on the results of this study, we anticipate that

the value of soil moisture initializations completed using the
corrected forcing products are closer to actual surface
conditions and subsequently more useful to the climate
modeling community. Hence it is possible to increase the
accuracy of simulations for the initial soil moisture state
using reanalysis products after the implementation of a
relatively simple bias reduction procedure.
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