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1. INTRODUCTION

Successful climate prediction at seasonal-to-interannual
time scales may depend on the optimal initialization of the
land surface states, in particular soil moisture (Koster and
Suarez 2001). Such optimal initialization can be achieved
by assimilating soil moisture observations into the land
model prior to the forecast. We assess the performance
of the Extended Kalman filter (EKF) and the Ensemble
Kalman filter (EnKF) for soil moisture estimation when
used with the Catchment Land Surface Model (CLSM) of
the NASA Seasonal-to-Interannual Prediction Project.

2. KALMAN FILTERING

Since for seasonal forecasts we are only interested in the
estimates at the start time of the prediction, sequential
assimilation methods like Kalman filters are ideally suited
to the task. The major differences between the EKF and
the EnKF concern (i) the approximation for nonlinearities
of the hydrologic model and the measurement process,
(ii) the treatment of horizontal correlations in the model or
measurement errors, (iii) the range of model errors that
can be represented, (iv) the ease of implementation, and
(v) computational efficiency.

The EKF approximates the error covariance propaga-
tion by linearizing the model. However, the computational
demand resulting from the error covariance integration is
prohibitive unless further approximations are made (Gelb
1974). In this study we use the EKF implementation of
Walker and Houser (2001) in which all correlations be-
tween different catchments are neglected. The EnKF, on
the other hand, nonlinearly propagates an ensemble of
model trajectories from which sample forecast error co-
variances are derived at the update time (Evensen 1994,
Reichle et al. 2001). Its main approximation is the size of
the ensemble. To simplify the comparison with the EKF,
we also neglect horizontal error correlations in the EnKF.

3. TWIN EXPERIMENT

We conduct a twin experiment over the south-eastern
United States by assimilating synthetic observations of
near-surface soil moisture once every three days into the
CLSM. The twin experiment starts with a model integra-
tion that serves as the “true” solution and is meant to rep-
resent nature. Next, we integrate the model again over
the same time period but with an intentionally poor initial
condition as well as different forcing data and model pa-
rameters. Collectively, these “wrong” inputs and param-
eters represent our imperfect knowledge of the true land

processes. The resulting fields constitute our best guess
prior to assimilating the remote sensing data and will be
referred to as the “prior” solution. The synthetic obser-
vations used in the assimilation are derived from the true
fields by adding random measurement noise. In partic-
ular, we generate synthetic observations of the surface
soil moisture with an error of 2 % (volumetric) once every
three days for all catchments.

4. RESULTS AND DISCUSSION

Figure 1 shows the time average (root-mean-square) ac-
tual errors of the moisture content variables from Feb to
Dec 1987. The actual errors are the differences between
the true soil moisture (from the control experiment) and its
EKF or EnKF estimate. Obviously, the errors are higher
for the surface moisture content than for the root zone
and profile moisture contents. This is because the sur-
face moisture content varies on time scales of a day or
less, while we assimilate observations only once every
three days. Inbetween observation times, errors in the
model time scales and in the forcing (notably in precip-
itation) degrade the surface estimates. The situation is
different for the root zone and profile moisture contents.
These lower layers exhibit greater memory and variations
in their moisture content occur over longer time scales.
Consequently, short-term errors in the forcing do not sig-
nificantly impact the root zone and profile estimates.

Overall, we find that the EKF and the EnKF are able to
derive satisfactory estimates of soil moisture. In the case
of the EnKF, just four ensemble members prove sufficient
(Table 1). The EKF and the EnKF (with four ensemble
members) show comparable performance for comparable
computational effort. For five or more ensemble mem-
bers, the EnKF outperforms the EKF, albeit at greater
computational expense. This is attributed to the EnKF’s
flexibility in representing non-additive model errors such
as errors in certain forcing variables or errors in model
parameters.

For both the EKF and the EnKF we find that the actual
estimation errors are typically larger than filter-derived
forecast and analysis error variances. The numerical dif-
ferentiation scheme used in the EKF requires frequent
checks in order to avoid that the error covariances diverge
or lose their positive definiteness. Although these checks
interrupt the integration of the error covariances and infor-
mation from earlier updates is partially lost, they are not
a major source of error.
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It is straightforward to extend the EnKF to account for
catchment-to-catchment error correlations. Such corre-
lations could for example arise from large-scale errors in
the forcing or from unmodeled lateral fluxes such as river
or groundwater flow. Moreover, satellite data are likely to
exhibit horizontal error correlations. If such error corre-
lations do in fact exist, the EnKF will be able to spread
information laterally, in particular from observed to un-
observed catchments. The same is not computationally
feasible for the EKF. The importance of horizontal error
correlations is a topic of active research.

In summary we can say that the EnKF is more robust
and offers more flexibility in covariance modeling (includ-
ing horizontal error correlations). This leads to its superior
performance in this study and makes the EnKF a promis-
ing approach for soil moisture initialization of seasonal cli-
mate forecasts.
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prior EKF EnKF
Ensemble size N [–] n/a n/a 4 5 10 100 500

Surface m.c. [%] 6.09 3.32 3.35 3.33 3.26 3.21 3.21
Root zone m.c. [%] 5.29 1.72 1.71 1.70 1.59 1.49 1.50
Profile m.c. [%] 5.59 1.64 1.62 1.60 1.49 1.39 1.40

Table 1: Actual errors of the moisture content (m.c.) in volumetric percent (root-mean-square average over all catch-
ments from Feb to Dec 1987).

Figure 1: Time-average error of the moisture content (m.c.) prior to the assimilation (first column), for the EKF (second
column), and for the EnKF with N=10 ensemble members (last column). The first, second, and third rows show the
errors for the surface, root zone, and profile soil moisture content, respectively. The average is from Feb to Dec 1987 in
the root-mean-square (rms) sense. Units are volumetric moisture percent.


