Chapter C.4

Terrestrial Data Assimilation
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Accurate assessment of the spatial and temporal varia-
tion of terrestrial system storages (energy and mass) is
essential for addressing a wide variety of highly socially
relevant science, education, application, and manage-
ment issues. Improved land-surface state estimates find
direct application in agriculture, forest ecology, civil en-
gineering, water resources management, crop system
modelling, rainfall-runoff prediction, atmospheric proc-
ess studies, and climate and ecosystem prediction. Data
assimilation is a method by which observations and
modelling are combined to create a continuous dataset
in space and time, devoid of gaps. Pioneered for the at-
mosphere in operational Numerical Weather Prediction
(NWP) centres (the National Centers for Environmen-
tal Prediction, Kalnay et al. 1996; the European Centre
for Medium-Range Weather Forecasts, Gibson et al. 1994;
the NASA Data Assimilation Office, Schubert et al.1993),
the method is now being applied at the land surface. Spa-
tially and temporally variable rainfall and available en-
ergy, combined with land-surface heterogeneity, cause
complex variations in all processes related to surface hy-
drology between the scales of conventional measure-
ment networks. The characterisation of the spatial and
temporal variability of water and energy cycles are criti-
cal to improve our understanding of land-surface/at-
mosphere interaction and the impact of land-surface
processes on climate extremes. Because the accurate
knowledge of these processes and their variability is im-
portant for weather and climate predictions, most NWP
centres have incorporated land-surface schemes in their
models. However, errors in the NWP forcing accumu-
late in the surface water and energy stores, leading to
incorrect surface water and energy partitioning and re-
lated processes. This has motivated the NWP centres to
impose ad hoc corrections to the land-surface states to
prevent this drift.

Land data assimilation entails the use of uncoupled
land-surface models forced with near-surface meteoro-
logical observations, and is therefore not affected by
NWP forcing biases. In practice, gaps in the meteoro-
logical observing network mean that land models are
forced with output from atmospheric analyses produced
with their own data assimilation techniques for gap-fill-
ing, as well as satellite data and radar precipitation meas-
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urements. Existing high-resolution vegetation and soil
coverage data can be used to specify land-model param-
eters. By virtue of the use of a gridded regional or glo-
bal land-surface model in the assimilation process, co-
registration of all output data is achieved automatically.
The land model, run at high resolution, produces results
that can be aggregated to various scales to assess water
and energy balances and validated with various in situ
observations. Ultimately, observations of land-surface
storages (soil moisture, temperature, snow) and fluxes
(evaporation, sensible heat flux, runoff) can be used to
further validate and constrain the land data assimila-
tion predictions. By continuously confronting theoreti-
cal and observational knowledge, data assimilation
presents a rich opportunity to better understand physi-
cal processes and observation quality in a structured,
iterative and open-ended learning process.

Data assimilation is also an important tool to help us
make sense of voluminous and disparate data types that
are becoming available from new space-based Earth
observation platforms, as well as traditional in situ ob-
servations. Inconsistencies between observations and
predictions are easily identified in a data assimilation
system, and demand explanation, providing a basis for
observational quality control and validation. Finally, the
data assimilation system can extend or “advect” the avail-
able observation information in time and space (e.g.
surface soil moisture observations vertically into the root
zone) to provide continuous fields for use in subsequent
research and application. Essentially, data assimilation
is used to consolidate disparate observational and model
information operationally into a unified, complete de-
scription of the terrestrial system that can be used com-
munity-wide by scientists to study important phenom-
ena, evaluate models and data, and enhance prediction.

As with oceanic or atmospheric data assimilation,
there exist both statistical and dynamic approaches to
fill the gaps between observations in space and time.
Statistical methods apply assumed or estimated prop-
erties of a given variable to derive continuous fields or
improve resolution. These may be as simple as linear
interpolation or regression, or may employ sophisticated
techniques such as empirical consideration of the physi-
cal terrain or use of neural networks. Stochastic tech-
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niques also may be used to generate “weather” where
only time-averaged data exist, thereby downscaling in
time and producing more realistic forcing for individual
modelling efforts.

Dynamic data assimilation employs physically-based
models to fill gaps between observations, and produces
a physically-consistent estimate of the space-time evo-
lution (Fig. C.7).For land data assimilation, either stand-
alone land-surface schemes or coupled land-atmosphere
models may be used. However, both statistical and dy-
namic land data assimilation represent only an approxi-
mation to the true evolution of the physical state - the
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more ground truth data that can be brought to bear on
the problem, the better the result.

When compared to its atmospheric counterpart, ter-
restrial data assimilation is in its infancy (Mahfouf and
Viterbo 1998). This is due to a lack of an operational
exchange of observed data, the small-scale structure of
many land-surface variables, and the relatively crude
specification of the surface in the atmospheric host mod-
els used by the operational centres. Moreover, the op-
erational data assimilation centres, mainly supporting
weather forecasts, were slow to recognise the importance
of the land surface. Finally, surface observables are re-
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lated in a non-linear way to the model state variables
and the structure of model and observations errors is
poorly known.

C.4.1 Topographic Coherence of Weather -

The Role of Statistical Assimilation

C.4.1.1 Stochastic Weather Models for
Scenario Generation

A major requirement of many IGBP Programmes, in-
cluding BAHC, GCTE, LUCC and GAIM, is the develop-
ment of techniques for the simulation of spatially and
temporally detailed atmospheric inputs to hydrological
and ecological models. These are required at the spatial
and temporal scales needed by real management sys-
tems. The spatial scales asked for are normally not coars-
er than a few kilometres. The temporal scale usually re-
quired is at least the daily time scale, incorporating mean
behaviour as well as measures of variation and extremes.
The spatial scale is much finer than the spatial resolu-
tion of general circulation and regional atmospheric
models. A commonly accepted way of generating fine-
scale scenarios is to perturb parameters of stochastic
models of the observed current weather, for example, in
accordance with broad-scale simulations of general cir-
culation models (IGBP 1993). This approach has been
used widely in climate impact research, both for the cur-
rent weather and for projected future climates (Zorita
et al. 1992; Kittel et al. 1995; Mearns et al. 1997; Semenov
and Barrow 1997; Wilby et al. 1998). It has been called
semi-empirical downscaling by Giorgi and Mearns
(1991) and rests on three principal assumptions:

1. The validity of the broad-scale scenarios generated
by GCMs;

2. The maintenance in changed climates of the observed
links between the broad-scale atmospheric behaviour
and stochastic weather model parameters;

3. The ability of stochastic weather models, with param-
eters essentially consisting of first- and second-order
summary atmospheric statistics, to simulate accu-
rately spatially and temporally detailed atmospheric
inputs to ecological and hydrological models.

These assumptions are ordered by their degree of
validity. Assumption 1is most open to question, particu-
larly with regard to significant interactions between the
atmosphere, the land-surface and the ocean system and
therefore a very significant source of uncertainty in sce-
nario generation. This is underlined by significant dif-
ferences in the broad scale precipitation scenarios pro-
vided by different GCMs (CSIRO 1996). Nevertheless,
GCMs provide a starting point for one type of genera-
tion of a range of climate change scenarios. Given the

uncertainties associated with GCM predictions it is now
recognised that broad scale scenarios should also be
generated in the light of perceived vulnerabilities of
land-surface systems. This is illustrated below in Fig. C.8
and further discussed in Part E.

Assumption 2 is also open to question but is sup-
ported by the observed broad scale temporal and spa-
tial coherence of the current atmosphere system. This
coherence appears to be founded on physical principles,
and is therefore likely to be maintained in changed cli-
mates. The validity of the links identified under assump-
tion 2 will be enhanced if the stochastic weather mod-
els are simply parameterised, so that they can be cali-
brated robustly from minimal data. This can facilitate
the identification of the parameters most likely to re-
spond to climate change, especially if the stochastic
models incorporate physically-based structures that can
be identified from observed data (Hutchinson 1995a).

The validity of assumption 3 is generally accepted.
This has formed the basis for the development of sto-
chastic weather models to provide inputs to ecological
and hydrological models, beginning with the work of
Jones et al. (1972), Richardson (1981) and Srikanthan and
McMahon (1984), through to more recent work by
Racsko et al. (1991), Shah et al. (1996) and Wilks (1999b).
First- and second-order long-term weather statistics,
from which stochastic simulation is a direct corollary,
can well calibrate atmospheric variability, including
probabilities of extreme events for the current weather.
The main ongoing issue here is the practical one of iden-
tifying and calibrating space-time stochastic models that
incorporate adequately observed spatial and temporal
behaviour. This is made difficult by the relative sparse-
ness of measured surface weather data and the need to
calibrate observed longer term weather variations, over
decades or more.

There has been steady progress in the development
of methods for observing and interpreting spatially de-
tailed atmospheric inputs by remote sensing and con-
sequent potential for integrating remotely-sensed data
with ground-based data (Georgakakos and Kavvas 1987;
Stewart and Finch 1993; Fo and Crawford 1999). How-
ever, there are ongoing difficulties in calibrating re-
motely-sensed surface weather data accurately, particu-
larly rainfall data (O’Connell and Todini 1996). Radar
estimates of rainfall amounts can be in error by as much
as a factor of two (Barros and Kuligowski 1998). As recog-
nised in IGBP (1993), the main role for remotely-sensed
data in the context of stochastic weather model devel-
opment appears to be in providing insight into the na-
ture of the spatial variability of surface weather. The
ground-based meteorological data network remains the
only source of daily surface weather data with extensive
temporal coverage over the 20th century and near com-
plete global land coverage. It is important that this net-
work be maintained and, where appropriate, upgraded.
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C.4.1.2 Scheme for Generating
Stochastic Weather Scenarios

If stochastic models with global coverage are to be de-
veloped from the ground-based meteorological data
network, there is a critical need for accurate spatial in-
terpolation of appropriate weather statistics across the
Earth’s land surface. This has been achieved by incor-
porating topographic dependencies into the interpola-
tion process. The task of developing stochastic space-
time weather models from standard meteorological net-
works can then be conveniently divided into three steps
(Hutchinson 1995a), as shown in Fig. C.8. This approach
conveniently isolates different aspects of weather model
development. In particular, it helps to identify the dif-
fering spatial dependencies and spatial scales of vari-
ous model parameters and weather anomalies, with con-
sequent differing requirements with regard to model
complexity and observation network density.

The first step in this scheme is the development of
stochastic models at single points where recorded weath-
er data are available. It is at this stage that questions of
appropriate temporal scale for ecological and hydrologi-
cal models are addressed, as well as the incorporation of
simple physically-based model structures, as discussed
above. Both daily and monthly time scales have been used,
although the daily time step is the most common. It is
sufficient to model rainfall extremes, soil erosion and time-
critical temperature-dependent events in plant growth
and yield. The monthly time step is sufficient to model
drought, natural vegetation, and broad scale hydrology.
The variables most commonly required for ecological and
hydrological models are precipitation, daily maximum
and minimum temperature, solar radiation, atmospheric
humidity and potential evaporation (IGBP 1993).

The second step in Fig. C.8 is the development of tech-
niques to extend the parameters of point stochastic
models spatially across the landscape. This is usually
done by incorporating the effects of fine scale topogra-
phy, as provided by the GTOPO30 and other elevation
models. It is after parameters have been interpolated
across the landscape that broad scale long-term weather
change perturbations are applied. As both daily and
monthly point stochastic weather models are normally
calibrated on a month-by-month basis (Richardson 1981;
Georgakakos and Kavvas 1987), the spatial interpolation
of model parameters is related strongly to the interpo-
lation of summary monthly weather statistics.

The most critical parameters in stochastic weather
model calibration are the means of the different vari-
ables. Measures of variance and serial dependence are
often less well defined by the data, and less critical to
the performance of the fitted weather model. Variances
are normally required to calibrate probabilities of ex-
treme events, but Hutchinson (1995a), building on the
work of Stidd (1973), has shown that daily rainfall dis-
tributions can be calibrated accurately with a truncated
normal distribution using essentially just two first-or-
der statistics, the mean rainfall amount and the mean
number of dry days. Similarly, Chia and Hutchinson
(1991) have shown that the variance of daily sunshine
duration can be estimated reasonably from the daily
mean and Geng (1986) has demonstrated empirical re-
lationships between mean and variance parameters of
the Richardson (1981) weather model. Mean weather
parameters typically display the most complex spatial
patterns, often strongly modulated by topography. Thus
effective methods for the spatial interpolation of month-
ly mean weather statistics should be sufficient to enable
the interpolation of all of the parameters of suitably
parameterised stochastic point models.

Fig. C.8.
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Developments in the first two steps in Fig. C.8 are
guided by the requirements of the third step, the devel-
opment of coordinated space-time models that ade-
quately respect both spatial and temporal dependencies
of daily or monthly weather anomalies. These anoma-
lies are essentially normalised differences between ac-
tual daily (or monthly) weather values and the monthly
mean values. Normalised anomalies show a high degree
of spatial and temporal coherence and can be modelled
effectively by a first-order multivariate autoregressive
model. Richardson (1981) showed that such a model was
appropriate for normalised daily temperature and solar
radiation anomalies, and that the parameters defining
the first-order temporal correlation structure could be
assumed to be constant across all sites examined. Simi-
larly, Schneider and Griffies (1999) found that a first-
order autoregressive model was sufficient to model GCM
output and could be used as a basis for predictability
studies of area-averaged variables. Autoregressive struc-
tures can also be simply extended to account for inter-
annual variability, such as in the twofold autoregressive
Markov model described by Karner and Rannik (1996).
More complex autoregressive integrated moving aver-
age models have also been used to model space-time
precipitation (Shah et al. 1996).

C.4.1.3 Stochastic Models

Stochastic weather model development has been almost
totally dominated by developments in stochastic mod-
els of precipitation, for which there is a vast literature
(Georgakakos and Kavvas 1987). This reflects both the
dominant control exerted by precipitation on ecologi-
cal and hydrological processes and the difficulty in de-
veloping complete weather models. Only relatively sim-
ple daily and monthly precipitation models, however,
can be used for long-term weather-scenario applications.
More complex precipitation models have been developed
for restricted types of precipitation and have complex
structures that are acknowledged to be difficult to cali-
brate and validate over large areas (Valdes et al. 1985;
Sivapalan and Wood 1987). However, there has been
progress in simplifying the parameters of rainfall mod-
els based on cluster processes and in regionalising these
parameters for environmental impact studies (Cowpert-
wait et al. 1996).

Two classes of daily stochastic precipitation models
have achieved common use in scenario generation. The
traditional approach uses a first-order two-state Markov
chain to model rainfall occurrence and models rainfall
amounts on wet days independently using a gamma dis-
tribution. This approach has been extended by fitting
more complex models, but the basic separation between
rainfall occurrence and rainfall amount has remained
(Wilks 1999a). The occurrence structure has been ex-

tended by fitting different distributions to lengths of wet
and dry spells and by extending the order of the Markov
chain. Models for rainfall amount have been extended
to include the mixed exponential distribution and by
conditioning the parameters of the gamma distribution
on the wet or dry status of preceding days. These exten-
sions are obtained at the expense of fitting additional
parameters. A simple occurrence model based on the
normal distribution was suggested by Hutchinson
(1995a). This model uses no additional parameters but
was found to simulate dry spell lengths better than a
first-order Markov chain model at locations across the
whole USA.

The second approach consists of conditional stochas-
tic precipitation models that incorporate physically-
based controls by having model parameters conditioned
on classified broad scale atmospheric circulation pat-
terns. Such models have been developed by Bardossy and
Plate (1992), Hay et al. (1991) and Wilson et al. (1992).
These models have been found to match various observed
mean and extreme rainfall statistics and to respect ob-
served spatial dependencies. These models offer fairly
direct links to large-scale circulation patterns. Their util-
ity in generating future weather scenarios, with respect
to Assumption 2 above, depends on the maintenance of
the observed classes of atmospheric circulation patterns,
and the constancy of their links with the rainfall model
parameters. These models have provided valuable insight
into the non-linear sensitivity of hydrological processes
to postulated changes in global weather.

Complete stochastic weather models, such as the
point model proposed by Racsko et al. (1991) and the
multi-site model proposed by Wilks (1999b), have typi-
cally been constructed along the lines of the model pro-
posed by Richardson (1981). These models have been
used widely in scenario applications. In these models,
weather variables, including daily maximum and mini-
mum temperature and daily total solar radiation, are
conditioned on the daily occurrence and non-occur-
rence of precipitation. However, this conditioning is
weakly defined, since the process that affects tempera-
ture and solar radiation directly is the occurrence of sig-
nificant cloud. This is not always associated with pre-
cipitation. More direct process-based relationships be-
tween the commonly required surface weather variables
need to be explored. Such developments may overcome
some of the reservations expressed by Katz (1996) about
the use of such conditional stochastic weather models
in generating long-term weather change and variability
scenarios.

These models also need to be extended to better ac-
count for observed interannual variability. As widely
recognised, and discussed by Katz and Parlange (1998),
stochastic weather models fitted to daily statistics tend
to underestimate interannual variability. This can be
partially addressed by fitting more complex models, but
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these models tend to vary with geographic location and
this can make the construction of multi-site models dif-
ficult Wilks (1999a). It is also likely that this phenom-
enon is due in part to non-stationarities in the weather
system, such as those associated with ENSO (Phillips
et al. 1998). More generic methods are called for to ad-
dress this issue.

C.4.1.4 Topographic Dependent Interpolation of
Weather Model Parameters

Statistical interpolation techniques appear to be best
suited to the task of spatially extending the parameters
of point simulation models. The techniques include
kriging (Cressie 1991) and thin plate smoothing splines
(Wahba and Wendelberger 1980). These methods have
similar accuracy although splines tend to be more eas-
ily calibrated (Hutchinson and Gessler 1994). Thin plate
smoothing splines have been used to interpolate month-
ly mean weather parameters across the Australian con-
tinent (Hutchinson 1991), England (Semenov and Brooks
1999) and Canada (Price et al. 2000), at spatial resolu-
tions of a few kilometres. The PRISM method (Daly et al.
1994) fits local elevation-based regressions to weather
data. It has been used to interpolate long-term weather
statistics across the USA, also at a spatial resolution of a
few kilometres. Thin plate smoothing splines have also
been used to interpolate weather means at coarser reso-
lution across Europe (Hulme et al. 1995) and all conti-
nents except Antarctica (Leemans and Cramer 1991).

The major factor in the accuracy and spatial resolu-
tion of these interpolated weather surfaces has been the
incorporation of dependences on elevation as indicated
in Fig. C.8. This is well known in the case of tempera-
ture, where the dependence on elevation is almost linear.
Monthly mean precipitation is also modulated strongly
by topography, but its influence varies spatially. Both thin
plate smoothing splines and the PRISM method can in-
corporate this spatially varying dependence. Hutchinson
(1995b) and Running and Thornton (1996) have shown
that the relative impact of elevation on precipitation pat-
terns is two orders of magnitude greater than the impact
of horizontal position. Thus precipitation patterns can
be influenced significantly by relatively modest topo-
graphic features (Barros and Kuligowski 1998). The spa-
tial resolution of this dependence has been estimated as
4-10 km (Daly et al. 1994; Thornton et al. 1997; Hutchin-
son 1998).

The number of data points and approximate stand-
ard errors of monthly mean weather surfaces fitted
across Australia are given in Table C.4. These errors are
typical for elevation-dependent surfaces derived from
standard meteorological networks. As for most regions
of the world, the number of stations that record pre-

Table C.4. Number of data points and approximate standard errors
of fitted monthly mean climate surfaces across Australia (Hutchin-
son 1991)

Solar radiation 150 3%

Daily maximum temperature 900 0.2-04°C
Daily minimum temperature 900 0.3-05 °C
Precipitation 10000 5-15%
Pan evaporation 300 5%

cipitation exceeds by about an order of magnitude the
number of stations that record other weather variables.
This gives a reasonable indication of the relative spatial
complexity associated with each variable. An example
of a final interpolated surface for precipitation is shown
in Fig. C.9. Further investigation is needed to clarify the
scales of various topographic effects on precipitation
(Hutchinson 1998) and to better define the topographic
effects on temperature, such as topographically control-
led inversions in winter and proximity to large water
bodies (Hutchinson 1991).

C.4.1.5 Spatial Structure and Topographic
Dependencies of Weather Anomalies

Since hydrological responses can be required simulta-
neously across larger regions, the spatial covariance
structure of the weather anomalies generating these re-
sponses needs to be accommodated. Two applications
of this analysis may be distinguished. The first is the
spatial interpolation of values in real time from obser-
vation networks. This has particular relevance for cali-
bration and validation of models of observed hydroeco-
logical response. Monthly rainfall anomalies can be in-
terpolated reasonably well from standard meteorologi-
cal networks (Lyons 1990), but additional remotely-
sensed data are usually required to interpolate daily rain-
fall satisfactorily (Fo and Crawford 1999).

The second application is the statistical simulation
of spatially distributed weather anomalies for scenario
applications. Normalised weather anomalies tend to dis-
play broad spatial patterns that are controlled by broad
synoptic patterns. These patterns tend to be independ-
ent of topography, unlike the corresponding non-nor-
malised quantities. This can simplify the task of analys-
ing spatial covariance structure, which can be addressed
using standard multivariate statistical interpolation and
analysis methods (Bell 1987; Daley 1991). However, while
relatively simple models can be used, rainfall anomaly
structure can be complicated by anisotropy (Obled and
Creutin 1986), by systematic differences between inten-
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Fig. C.9.

January mean precipitation
interpolated from 16 000 sta-
tions across Australia across a
2.5 km grid

sity-based and occurrence-based correlations (Hutch-
inson 1995a) and by non-stationarity of spatial correla-
tions over time (Jones and Wendland 1984). Thus, accu-
rate space-time simulation of daily rainfall remains an
active and challenging subject for hydrology (O’Connell
and Todini 1996).

The scheme described here for stochastically gener-
ating spatially and temporally detailed weather values
from ground-based meteorological data has been widely
adopted for environmental impact research. Its strength
is its reliance on well-established methods for spatial
and temporal analysis. These methods reflect a high
degree of spatial and temporal coherence in the surface
weather, particularly when dependences on topography
are incorporated. The methods are subject to ongoing
development and are critically dependent on the main-
tenance, and upgrade where appropriate, of the ground-
based meteorological network. Equally important issues
are the identification and calibration of simple, physi-
cally-based model structures, and whether these struc-
tures can be used with confidence in changed weather
(Hutchinson 1995a). There is a similar search for parsi-
monious, physically-based model structures in hydrol-
ogy (O’Connell and Todini 1996). That such stochastic
model structures can be used in a changed weather can
only be truly ascertained after such a change occurs.
Nonetheless, these structures are well founded in exist-
ing methods for calibrating current and past weather,
and are an appropriate assumption for scenario gene-
ration.

Rainfall {mm)

0

C.4.2 Terrestrial Model Prediction

An essential component of any terrestrial assimilation
strategy is realistic simulation; the model physics! will
allow for the spatial and temporal extrapolation of ob-
served information into unobserved regions. Recent
advances in understanding the soil water dynamics,
plant physiology, micrometeorology and hydrology that
control biosphere-atmosphere interactions have spurred
the development of Land Surface Schemes (LSSs), whose
aim is to represent simply yet realistically the transfer
of mass, energy and momentum between a vegetated
surface and the atmosphere (e.g. Dickinson et al. 1993;
Sellers et al. 1986). LSS predictions are regular in time
and space but these predictions are influenced by model
structure, errors in input variables and model param-
eters, and inadequate treatment of sub-grid scale spa-
tial variability. Several studies have shown that models
with physically observable parameters and states are
preferred in data assimilation studies (Entekhabi et al.
1994; Houser et al. 1998). Therefore, LSSs must be devel-
oped that replace the current conceptual parameters and
states that are not observable with more physically-re-
alistic representations. An important development in this

' Throughout this part, the term “physics” is used to represent all
physical processes, including chemical and biological as well as
thermodynamic, hydrodynamic, and other “diabatic” processes
that produce or consume non-mechanical energy.
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regard is the coupling of radiative transfer models for
the direct prediction of multi-frequency brightness tem-
peratures by LSSs (Burke et al. 1997).

LSSs generally simulate the diurnal dynamics of soil
moisture (both liquid and frozen), soil temperature, skin
temperature, snowpack water equivalent, snowpack den-
sity, canopy water content, and the traditional energy flux
and water flux terms of the surface energy and water
balance. LSSs are evolving toward the inclusion of car-
bon and nitrogen physics, dynamic vegetation and eco-
system physics, groundwater interaction, runoff routing,
and highly refined vertical and horizontal heterogeneity
parameterisations. LSSs are increasingly addressing the
problem of sub-grid heterogeneity by subdividing each
GCM grid cell into a mosaic of tiles (after Avissar and
Pielke 1989), each tile having its own vegetation/soil rep-
resentation and hence water and energy balance. LSSs
are also being explored that simulate catchment-based
topographic processes, rather than the traditional grid-
based approach (Koster et al. 2000; Ducharne et al. 2000).
Another new frontier in land-surface modelling is the
explicit coupling of carbon and nitrogen dynamics with
water and energy dynamics on timescales ranging from
minutes to centuries. This enables the prediction of eco-
system responses and feedbacks to weather and climate
variability, as well as allowing for the assimilation of car-
bon, nitrogen, and vegetation observations.

There are strong justifications for studying LSSs, both
uncoupled and coupled with atmospheric and ocean
models. Coupling the LSS to an atmospheric model al-
lows for the study of the interaction and feedbacks be-
tween the atmosphere and land surface. However, cou-
pled modelling also imposes strong land-surface forc-
ing biases predicted by the atmospheric model on the
LSS. These biases in precipitation and radiation can over-
whelm the behaviour of LSS physics (Dirmeyer 2001).
In fact, several weather prediction centres must “correc-
tively nudge” their LSS soil moisture toward climato-
logical values to offset its drift. An uncoupled LSS can
use observed land-surface forcing, use less computa-
tional resources, and still address many relevant scien-
tific questions. Arguably, the most critical terrestrial
coupling with the atmosphere is through precipitation.
There are currently large efforts to derive precipitation
(e.g. Global Precipitation Climatology Project) and to
assimilate precipitation estimates into coupled models
(Hou et al. 2000), which may improve the forcing of land
models in coupled systems significantly.

PILPS has been responsible for a series of comple-
mentary experiments that focuses on identifying param-
eterisation strengths and inadequacies in about 30 land-
surface process models. PILPS is a project designed to
improve the parameterisation of the continental surface,
especially hydrological, energy, momentum and carbon
exchanges with the atmosphere. This is an important
exercise because there are significant differences in the

formulation of individual processes in the available land-
surface schemes. These differences are comparable to
other recognised differences among current global cli-
mate models such as cloud and convection parameteri-
sations. PILPS emphasizes sensitivity studies with and
intercomparisons of existing land-surface codes and the
development of areally extensive datasets for their test-
ing and validation (Henderson-Sellers et al. 1993).

Recognising the importance of soil moisture in the
climate system, the International Satellite Land Surface
Climatology Project (ISLSCP), which is a contributing
project of GEWEX, began the Global Soil Wetness Project
(GSWP) in 1994 (Dirmeyer et al. 1999). The initial efforts
of the GSWP were to implement a land-surface model-
ling effort using a CD-ROM set of land-surface data de-
veloped by ISLSCP (Meeson et al. 1995). The CDs con-
tain, in addition to other information, meteorological
observations and parameter datasets sufficient to obtain
soil moisture estimates for 1987-1988 for a 1° X 1° grid.
Ten groups, using various LSSs, including BATS, Mosaic,
multiple versions of SiB, and others, produced soil mois-
ture fields for these two years. Through the GSWP, Entin
et al. (1999) attempted to validate these soil moisture
fields using various soil moisture observations from the
Northern Hemisphere mid-latitudes. They found that no
model was able to recreate the actual soil moisture for
all the areas studied. They also discovered that no model
was able to recreate the seasonal cycle of soil moisture in
Ilinois and Russia, though all the models were deficient
in recreating the changes of soil moisture in Mongolia
and China, some of the few locations where routine soil
moisture observations are made. The quality of the forc-
ing data vary greatly from place to place, and may be a
factor in the poor performance of the LSSs over certain
regions (Oki et al. 1999). A second CD-ROM set is planned
by ISLSCP, which will contain data for at least ten years
(1986-1995). The GSWP will use these data to force LSSs
which should then address another of the main issues
raised when citing the difficulty of performing soil mois-
ture validation, namely that of simulating interannual
variability.

C.4.3 Terrestrial Observations

Another essential component of terrestrial data assimi-
lation is the regular provision of land observations with
known error characteristics. The data assimilation prob-
lem is best posed when the state observations being as-
similated have similar physical complements in the LSS,
and these states have significant memory or inertia so
that an improvement is preserved and (hopefully posi-
tively) impacts subsequent predictions. Observations of
significance to terrestrial data assimilation include tem-
perature (air temperature, surface skin temperature, can-
opy temperature, and soil temperature), moisture (near-
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surface humidity, surface and profile soil moisture con-
tent, surface saturation, total water storage, plant water
content, depression storage, lakes and rivers), snow
(aerial extent, snow water equivalent, depth), carbon and
nitrogen (plants and soil), and vegetation biomass
(height, leaf area index, greenness). Land-surface fluxes,
such as runoff, latent and sensible heat flux, carbon and
nitrogen flux, and radiative fluxes, can be used in ter-
restrial data assimilation in the context of backing out a
mass or energy state correction through conservation
equations. Generally, it is more robust to perform a
multi-variate analysis or assimilation, where an obser-
vation is used to constrain multiple relevant LSS states
(this is further improved when observations of several
different states are used). Data assimilation methods are
designed to merge predictions and observations de-
pending on the perceived errors of each. Establishing
these errors can be the most complex and subjective part
of data assimilation. Therefore, it is critical that obser-
vation error characteristics be well established through
instrument calibration and validation. Large-scale ter-
restrial data assimilation development has lagged be-
hind atmospheric data assimilation, primarily due to a
lack of suitable observations available regularly in time
and space. However, with the deployment of several new
Earth system remote sensing platforms, this situation is
quickly changing. The status of a few particularly criti-
cal terrestrial observations is described in more detail
below.

Remote sensing of surface temperature is a relatively
mature technology (see Chapt. B.8). The land surface
emits thermal infrared radiation at an intensity directly
related to its emissivity and temperature. The absorp-
tion of this radiation by atmospheric constituents is
smallest in the 3-5 and 8-14 pm wavelength ranges,
making them the best windows for sensing land-surface
temperature. Some errors due to atmospheric absorp-
tion and improperly specified surface emissivity are
possible, and the presence of clouds can contaminate or
obscure the signal. Generally, surface-temperature re-
mote sensing can be considered an operational technol-
0gy, with many spaceborne sensors making regular ob-
servations (i.e. Landsat TM, AVHRR, MODIS, and AS-
TER) (Lillesand and Kiefer 1987). The evolution of land-
surface temperature is linked to all other land-surface
processes through physical relationships, so it is an ideal
observation to assimilate.

Remote sensing of near-surface soil moisture con-
tent is a developing technology, although the theory and
methods are well established (Eley 1992). Long-wave
passive microwave remote sensing is ideal for soil mois-
ture observation, but there are technical challenges in
correcting for the effects of vegetation and roughness.
Microwave soil moisture remote sensing has been lim-
ited previously to aircraft campaigns (e.g. Jackson 1997a).
There are several current or future space-borne passive

and active (radar) microwave sensors that may be use-
ful to derive soil moisture information in a data-assimi-
lation context, including the Defense Meteorological
Satellite Program (DMSP) SSM/I (Engman 1995; Jackson
1997b), the EOS-AMSR (Advanced Microwave Sound-
ing Unit), the Tropical Rainfall Measurement Mission —
Microwave Imager (TRMM-TMI), and the European
Space Agency Soil Moisture and Ocean Salinity (ESA-
SMOS) instruments. All of these sensors have adequate
spatial resolution for land-surface applications but have
a very limited quantitative measurement capacity, es-
pecially over dense vegetation and topographic relief.
Because of the large error in remotely-sensed microwave
observations of soil moisture, there is a real need to max-
imise its information by using data assimilation algo-
rithms that can potentially account for this error.

An important and emerging technology with respect
to terrestrial data assimilation is the potential to moni-
tor variations in total water storage (ground-water, soil
water, surface waters, water stored in vegetation, snow
and ice) using satellite observations of the time variable
gravity field. The Gravity Recovery and Climate Experi-
ment (GRACE), an Earth System Science Pathfinder mis-
sion, will provide highly accurate estimates of changes
in terrestrial water storage in large basins when it is fully
operational after it has been launched successfully in
2002. Wahr et al. (1998) note that GRACE will provide
estimates of variations in water storage to within 5 mm
on a monthly basis (Rodell and Famiglietti 1999). Birkett
(1995,1998) demonstrated the potential of satellite radar
altimeters to monitor height variations over inland wa-
ters, including climatically sensitive lakes and large riv-
ers and wetlands. Such altimeters are currently opera-
tional on the ERS-2, ENVISAT and TOPEX/POSEIDON
satellites, and are planned for the JASON-1 satellites.

Finally, snow aerial coverage and snow water equiva-
lent can be monitored routinely by many operational plat-
forms, including the Advanced Very High Resolution
Radiometer (AVHRR), Geostationary Operational Envi-
ronmental Satellites (GOES) and SSM/I. Recent algorithm
developments even permit the determination of the frac-
tion of snow cover within Landsat-TM pixels (Rosenthal
and Dozier 1996). Cline et al. (1998), describe an approach
to retrieve snow water equivalent from the joint use of
remote sensing and energy balance modelling.

C.4.4 Data Assimilation Concepts and Methods

Charney et al. (1969) first suggested combining current
and past data in an explicit dynamic model, using the
model’s prognostic equations to provide time continu-
ity and dynamic coupling amongst the fields. This con-
cept has evolved into a family of techniques known as
four-dimensional data assimilation (4DDA). “Assimila-
tion is the process of finding the model representation
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which is most consistent with the observations” (Lorenc
1995). In essence, data assimilation merges a range of
diverse data fields with a model prediction to provide
that model with the best estimate of the current state of
the natural environment so that it can then make more
accurate predictions (see Fig. C.7). The application of
data assimilation in land-surface studies has been lim-
ited to a few one-dimensional, largely theoretical stud-
ies (i.e. Entekhabi et al. 1994; Milly 1986) primarily due
to the lack of sufficient spatially-distributed hydrologi-
cal observations (McLaughlin 1995). However, the feasi-
bility of synthesising distributed fields of soil moisture
by the novel application of 4DDA applied in a hydro-
logical model was demonstrated by Houser et al. (1998).
Most land data assimilation schemes include the follow-
ing steps:

= An error checking procedure is used to correct or
eliminate erroneous data (Bengtsson 1985). Observa-
tions can contain different types of error, including
errors due to faulty instruments, improper process-
ing, or unsatisfactory communication of the data.

» QObservations can rarely be assumed to be physically
and spatially identical to the modelled state. There-
fore, an observation operator is often employed to
facilitate bias correction, space and time interpola-
tion, and range matching.

= The actual analysis or merging of observations with
model predictions is performed using a data assimi-
lation algorithm. Common data assimilation methods
include direct insertion, Newtonian nudging, optimal
or statistical interpolation, Kalman filtering, and vari-
ational approaches (often using an adjoint model).

“The process of replacing model values by ‘observed’
ones is called direct insertion” (Daley 1990) or updating.
This method assumes “perfect” observations, or obser-
vations with no error. Thus, model predictions that are
known to contain error are totally rejected and replaced
with the perfect observation. Any spatial or temporal in-
formation advection is performed entirely through the
model physics.

Newtonian nudging continuously adds a forcing func-
tion to the model’s prognostic equations to “nudge” the
model state gradually toward the observations. These
small forcing terms, based on the difference between the
simulated and observed state, gradually correct the model
fields, which are assumed to remain in approximate bal-
ance at each time step (Stauffer and Seaman 1990).

Statistical interpolation is a minimum variance meth-
od that is closely related to kriging (Bhargava and Danard
1994). The technique can be traced back to Kolmogorov
(1941) and Wiener (1949), who applied it to various areas
of science and engineering. With the development of
computer power, and through the inspiration of Gandin’s
publication, Objective Analysis of Meteorological Fields

(Gandin 1963), most major western meteorological serv-
ices were using statistical interpolation operationally by
the mid-1970s.

The Kalman filter has been extensively utilised in data
assimilation research (Ghil et al. 1981; Cohn 1982). The
Kalman filter assimilation scheme is a linearised statis-
tical approach that provides a statistically optimal up-
date of the system states, based on the relative magnitudes
of the covariances of both the model system state esti-
mate and the observations. The principal advantage of
this approach is that the Kalman filter provides a frame-
work within which the entire system is modified, with
covariances representing the reliability of the observa-
tions and model prediction.

Variational methods were first introduced by Sasaki
in 1958, and their use proved effective because they can
incorporate many constraints easily (Ikawa 1984). “The
variational algorithm requires the computation of the
gradient of the distance function to be minimised with
respect to the model state at the beginning of the as-
similation period” (Courtier and Talagrand 1990). Thus,
variational assimilation is principally very simple. One
first defines a scalar function that describes the distance
between the observations and the model prediction.
Then, one simply seeks the model solution that mini-
mises this function (Courtier and Talagrand 1990). The
complexity comes from the generally large size of the
minimisation problem.

One of the major components of any assimilation
system is quality control of the input data stream. Qual-
ity control (QC) refers to the process by which observa-
tional data and their attributes are analysed to identify
data items which are likely to contain gross errors and
the attempts to correct or remove such errors. Observa-
tion errors are usually of two types: natural error (in-
strument or representativeness error), and gross or rough
errors (improperly calibrated instruments, incorrect
spatial/temporal registration, incorrect coding of obser-
vations, or telecommunication errors). These errors can
be either random or spatially and/or temporally corre-
lated with each other. Clearly, QC for any single obser-
vation must involve information other than the obser-
vational datum itself. Common QC algorithms can be
categorised as follows:

» Theory, realism, or sanity checks see if the observa-
tion absolute value or time rate of change is physi-
cally realistic. This check filters such things as obser-
vations outside the expected range, unit conversion
problems, etc.

* Buddy checks compare the observation with compa-
rable nearby (space and time) observations of the
same type and reject the questioned observation if it
exceeds a predefined level of difference.

» Background checks examine if the observation is
changing similarly to the model prediction.
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According to a 1991 National Research Council report,
“to produce research-quality data from a new satellite
mission, the observed data should be subjected to a criti-
cal evaluation by an assimilation system in order to iden-
tify error characteristics of the instruments and the algo-
rithms” (National Research Council 1991). The assimi-
lation system can provide a systematic and powerful
means of merging new, remotely-sensed observations
with all earlier and current in situ and remotely sensed
measurements. In a real-time context, data assimilation
can provide quality assurance and validation of the ob-
servations, and can provide rapid identification and di-
agnosis of problems that might otherwise go unnoticed
for longer periods. The data assimilation system can
extend the available observations in time and space to
provide continuous fields for use in subsequent research
and application.

The continuous confrontation of theoretical and ob-
servational knowledge in a data assimilation system
presents a rich opportunity to better understand physi-
cal processes and observation quality in a structured,
iterative,and open-ended learning process. Data assimi-
lation is also an important tool to help us make sense of
voluminous and disparate data types that are becoming
available from new space-based Earth observation plat-
forms. Inconsistencies between observations and pre-
dictions are easily identified in a data assimilation sys-
tem, providing a basis for observational quality control
and validation. Modern data assimilation techniques use
relevant observations and a state-of-the-art land-phys-
ics model to estimate the state of the land surface. For
each observation, a background value is derived from
the model forecast for comparison. Systematic differ-
ences between observations and model predictions can
identify systematic error. Thus, the consistency of the
model provides guidance to identify observation prob-
lems in a data assimilation context. This methodology
clearly illustrates the importance of a good quality fore-
cast and an analysis that is reasonably faithful to the
observations. If the land model makes reasonably good
predictions, then the analysis must only make small
changes to an accurate background field (Hollingsworth
et al. 1986). In many cases the analysis fields can pro-
vide guidance for identifying observational problems
that can be compared with carefully chosen in situ ob-
servations to provide conclusive proof.

C.4.5 Current Projects

Subsurface moisture and energy stores exhibit persist-
ence on various time scales that have important impli-
cations for extended climatic and hydrological predic-
tions. Because these stores are time-integrated, errors
in NWP forcing accumulate in them, which leads to in-
correct surface water and energy partitioning. Land Data

Assimilation Systems (LDAS) which are uncoupled LSSs
that are forced primarily by observations and are there-
fore not affected by NWP forcing biases, are currently
under development (Brutsaert 1998). The implementa-
tion of a LDAS also provides the opportunity to correct
the model’s trajectory using remotely-sensed observa-
tions of soil temperature, soil moisture and snow using
data assimilation methods.

A multi-institutional LDAS research effort involving
NASA, NOAA, Princeton University, the University of
Washington, Rutgers University and the University of
Maryland is currently under way. This LDAS operates
in both retrospective and real-time modes at a z° reso-
lution over the continental United States using several
different land-surface models. Project information and
a real-time image generator are located at the LDAS web
site: http://ldas.gsfc.nasa.gov/. Model parameters are
taken from the high-resolution AVHRR-derived vegeta-
tion and soil survey classifications (Mitchell et al. 1999).
Figure C.10 shows July average downwelling surface
short-wave derived from GOES and the Eta model, total
monthly precipitation derived from NEXRAD radar,
gauges and the Eta model, experimental LDAS average
skin temperature predictions, and experimental aver-
age near-surface soil moisture. A more complete de-
scription is given above.

NASA and NOAA are currently extending the North
American LDAS project described above to all global
land. This high-resolution, near real-time Global Land
Data Assimilation Scheme (GLDAS) will use all relevant
remotely-sensed and in situ observations within a land
data assimilation framework. This development will in-
crease greatly our skill in land surface, weather, and cli-
mate prediction, as well as provide high-quality, global
land-surface assimilated data fields that are useful for
subsequent research and applications.

Loosely linked to GLDAS are other projects, like the
European project called ELDAS (Development of a Eu-
ropean Land Data Assimilation System to predict Floods
and Droughts), which is supported by the European Un-
ion sth Framework Programme (http://www.knmi.nl/
samenw/eldas/). ELDAS has been designed to develop a
general data assimilation infrastructure for estimating
soil moisture fields on the regional (continental) scale,
and to assess the added value of these fields for the pre-
diction of the land-surface hydrology in models used
for numerical weather prediction and climate studies.

ELDAS uses a common infrastructure implemented
at three participating institutes: ECMWE, DWD and
CNRM/Météo France. The procedure followed will be
able to generate soil moisture fields for a suite of land-
surface schemes - respectively TESSEL (Tiled ECMWF
Surface Scheme of Exchange processes at the Landsur-
face), TERRA (SVAT from the DWD) and ISBA (Interac-
tion Sol Biosphere Atmosphére of CNRM) - but also oth-
ers. The analysis method follows on the work by Rhodin
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Fig. C.10. An example of atmospheric forcing and land-surface state fields from the North American LDAS project

et al. (1999) and Hess (2001). Simulations will be car-
ried out with the full atmospheric model, but with model
precipitation and radiation replaced by the observed
data. Daily soil moisture field will be generated for a
grid covering Europe in a sequential, cycled way, updat-
ing the atmospheric initial fields using analyses, and
propagating the soil fields as first guess. The model grid
will be different for different case- and validation stud-
ies, but use a common set of up/down scaling proce-
dures.

Integral to the project are validation studies meant
to assess the quality of the soil moisture fields using in-
dependent data from the GSWP 2000 dataset (Global
Soil Wetness Project of GEWEX), from SSM/I (Special
Sensor Microwave/Imager) or AMSR (Advanced Micro-
wave Sounding Unit) validation (comparing these to
computed top-of-the-atmosphere microwave radiation,
generated from the surface state in the data assimila-
tion modules), from GLDAS output (GLDAS forcings will
be fed to the ELDAS data assimilation system) and from
French river basin datasets. The usefulness of the
dataproduct will be assessed in flood forecasting sys-
tems for UK rivers and the Rhine, and in European nu-
merical weather predictions.

At the European Centre for Medium-Range Weather
Forecasts, observations of screen-level temperature (SLT)
and humidity are assimilated using an optimal interpo-
lation technique (Douville et al. 2000). Over land, screen-

level winds are not included in the assimilation because
it is felt that the observations reflect local circulations,
poorly described in the assimilating model. Snow-depth
observations are combined with a model snow density
field and a short-term forecast background to produce
an analysis of snow mass (water equivalent). An analysis
of soil water is performed, based on the SLT analysis
(Fig. C.11). The errors in short-term forecasts of SLT are
combined linearly in an optimal way to produce soil wa-
ter corrections (Douville et al. 2000). Note that, in sharp
contrast to the atmosphere, no remote sensing informa-
tion is used in the surface data assimilation, hampering
the quality of the analysed products in data-void areas.
All the variables described above are analysed in the
40-year ECMWF re-analysis.

Terrestrial data assimilation systems are also under
development outside the immediate meteorological con-
text. The CAMELS (Carbon Assimilation and Modelling
of the European Land-Surface) project recently started
the development of a prototype carbon cycle data as-
similation system (CCDAS) in order to produce opera-
tional estimates of “Kyoto sinks”. To produce a best es-
timate of carbon uptake CAMELS will use all of the con-
straints implied by the different data sources, as well as
of the physiological and ecological constraints embod-
ied in terrestrial ecosystem models (see Fig. C.12). This
is essentially a data assimilation problem, requiring a
system similar to those used to initialise weather fore-
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Fig.C.11.
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cast models. In this case observations are used to con-
strain the internal parameters of the terrestrial ecosys-
tem models, while they are used to interpolate the ob-
servations.

The CCDAS scheme will use existing data sources (e.g.
flux measurements, carbon inventory data, satellite prod-
ucts) and the latest terrestrial ecosystem models to pro-
duce operational estimates of the European land car-
bon sink. The terrestrial ecosystem models TRIFFID
(terrestrial carbon cycle model from Hadley Centre, Cox
et al.2000), BETHY (Biosphere Energy Transfer Hydrol-
ogy model from the Max Planck Institute for Meteorol-
ogy, Knorr 2000; Knorr and Lakshmi 2001), ORCHIDEE
(ORganizing Carbon and Hydrology In Dynamic Eco-
systEms from Laboratoire des Sciences du Climat et de
IEnvironnement, Viovy et al. 2001; Friedlingstein et al.

2001) will simulate the European land carbon sink at
high resolution using operational analyses plus remote
sensing products (e.g. seasonally-varying fAPAR). At-
mospheric transport models will link terrestrial ecosys-
tem model-predicted carbon fluxes to atmospheric CO,
observations. Inverse models (e.g. Bousquet et al. 2000)
will then be used to adjust both terrestrial ecosystem
model parameters and prior estimates of carbon fluxes
based on a 20-25 year simulation period. Eventually an
online implementation of the CCDAS in a high-resolu-
tion atmospheric General Circulation Model (AGCM)
will use the existing data assimilation structure in the
AGCM plus the terrestrial ecosystem inverse model to
nudge internal model variables, such as respiring soil
carbon and leaf nitrogen, based on the atmospheric
measurements.



286 CHArTER C.4 - Terrestrial Data Assimilation

state variables

L S R
! | i surface CO,
: TEM ! : Iﬂl xes ey J
' parameters, | off-line B AR ) .S‘ImHZCZed :
! > variables | T P atmospheric
: state variables E—b TEM g e isling E
T ' JAPAR tration )
optimisation jmmmmm e e ;
algorithm V' climate, soils, | —— TR W TemmmRaomT ;
V' land-use |} ) satellite measured )
' drivers ! 1 fAPAR atmospheric |
T e el L N et CO, concen- |
fTTTTTTTTTTTTTS tration )
| sensitivity to |
: TEM i
\ parameters, | adjoint off-line TEM and A TM
’ i

Fig. C.12. Off-line carbon data assimilation system to be developed in CAMELS (Carbon Assimilation and Modelling of the European
Land Surface; ATM: Atmospheric Transport Model; TEM: Terrestrial Transport Model; fAPAR: fraction of Absorbed Photosynthetically

Active Radiation)

C4.6 Future Opportunities

With new land-surface state observations, and the rec-
ognised importance of the land surface on weather and
climate prediction, terrestrial data assimilation will come
of age this decade. However, there are many challenging
issues to address to realise this goal, which are summa-
rised as follows:

C.4.6.1 Terrestrial Observation

Profile soil moisture is arguably the most critical land
state, and it remains largely unmeasured. Castelli et al.
(1999) showed there is some soil water information in
infrared radiative temperature measurements, but the
best hope for operational soil moisture observations is
with passive L-band microwave sensors. They provide
information on soil water in the top 5-10 cm of soil, in
areas free of contamination from the canopy water. An
assimilation model can be used to solve the inversion
problem and obtain a profile of water in the root zone
(Calvet et al. 1998).

Subsurface soil temperatures have time scales of the
order of days to years that can serve as very valuable
diagnostics for anomalies in the surface forcing, in par-
ticular those related to cold season dynamics (Viterbo

et al. 1999). An effort is needed to disseminate in near-
real time soil temperatures, observed regularly down to
a depth of 1 m in many WMO stations.

A number of technological capabilities are maturing
that make real-time analysis of land-surface hydroeco-
logical systems possible - an ecological equivalent to
meteorological data assimilation. Key ecological data
include land-cover type, vegetation phenological status,
and leaf area index are measured globally by satellite
systems such as the Earth Observing System and are
available weekly. Energy balances and carbon flux meas-
urements from FLUXNET eddy covariance towers are
now becoming available continuously (see Chapt. B.4).

Independent, continuous and comprehensive valida-
tion is critical to the success of any terrestrial data assim-
ilation system. The structure of the assimilation scheme
ensures the accurate reproduction of assimilated obser-
vations, but it is recognised that data assimilation con-
straints can cause other model predictions to diverge
from reality.

C.4.6.2 Terrestrial Simulation

Comprehensive, physically-based terrestrial simulation
models must be developed that include standard and
accepted processes such as water and energy balance,
evapotranspiration, soil moisture depletion, stream run-
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off routing, groundwater interaction, surface water and
wetland processes, cold season dynamics, urban proc-
esses, photosynthesis, carbon and nitrogen cycling, plant
and ecosystem dynamics, vegetation primary produc-
tion, and coupling of all these processes with the over-
lying atmosphere. These models must also parameterise
realistically the processes arising from sub-grid hetero-
geneity in precipitation, radiation, vegetation, soils, to-
pography and atmospheric turbulence. These ecohydro-
logical process models must have physically realistic
states and parameters to ease their use in terrestrial data
assimilation systems. Finally, parameter calibration
methods must be fully developed and tested to specify
robust parameters for large-scale terrestrial simulation.

C.4.6.3 Terrestrial Data Assimilation

Multi-variate terrestrial data assimilation methods must
be further refined for operational use. These methods
should include use of both in situ and remote measure-
ments of soil temperature and moisture, and snow cover
and depth. Longer-term goals should be the assimila-
tion of runoff, groundwater and vegetation characteris-
tics. The emphasis should be on combined use of obser-
vations and coupled models.

Hollingsworth et al. (1986) showed that assumptions
on the bias and horizontal correlation structure of the
model and observations can have a significant impact
on error estimations. In practice, data assimilation is
often implemented with the assumption that observa-
tions and predictions are unbiased and uncorrelated in
space. These assumptions work reasonably well for in
situ observations, but satellite observations are usually
biased by inaccurate algorithms, and their errors are
usually correlated horizontally because the same sen-
sor is making all the observations. These assumptions
must be evaluated, and observation and model errors
must be defined better.

Terrestrial models have very little physics that act in
the horizontal dimension, therefore it may be possible
to limit the terrestrial data assimilation to one dimen-
sion. The benefits and drawbacks of using a one-dimen-
sional (vertical) or a multi-dimensional (vertical, hori-
zontal, and time) assimilation method must be evalu-

ated. Multi-dimensional assimilation methods are much
more computationally intensive, but maybe able to ex-
tend observations better into data-sparse regions. The
exploration of sub-grid scale terrestrial data assimila-
tion (i.e. into a tiled or mosaic model) and the ability of
the data assimilation algorithm to downscale observa-
tions to fine resolutions also remain unexplored issues.

Data assimilation systems can include a radiative
transfer observation operator, to allow the assimilation
of radiances directly, rather than derived quantities.
However, non-linearity in the forward model may make
this method non-workable for some land-surface vari-
ables. The benefits and drawbacks of direct radiance
assimilation must be explored more thoroughly.

Snow cover is a readily available observation that may
be of great use in terrestrial data assimilation systems.
However, terrestrial models usually use a snow water
equivalent state variable. Assimilation and modelling
methods need to be able to use snow cover information
in order to infer snow mass (i.e. Liston 1999).

The development of off-line land data assimilation
systems must be further developed and included in cou-
pled prediction systems. A surface data assimilation us-
ing information from a variety of ground-based and
remote-sensing observations will better produce realis-
tic soil temperature, soil water and snow mass global
fields. Moreover, short- to long-term forecasts in such a
system will provide the community with the most reli-
able global estimates of surface fluxes on a daily basis,
together with a realistic diurnal cycle.

An interesting aspect of LDAS is the possibility of
multiple land-surface predictions made by several dif-
ferent LSSs, with various initialisations. These various
land-surface prediction ensembles and super-ensembles
will be intercompared and explored. It is quite possible
that through this land-surface ensemble prediction strat-
egy, spatially-varying confidence limits on predictions
could be established and new ways to evaluate and im-
prove predictions could be developed.

Finally, there is a need to perform additional long-
term coupled land-atmosphere re-analyses that include
improvement in terrestrial simulation, observation, and
data assimilation. The resulting datasets would improve
greatly our understanding, prediction, and practical ap-
plication of terrestrial systems.



