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ABSTRACT

The capability of a global data compilation, largely satellite based, is assessed to depict the global
atmospheric water cycle’s mean state and variability. Monthly global precipitation estimates from the
Global Precipitation Climatology Project (GPCP) and the Climate Prediction Center (CPC) Merged Analy-
sis of Precipitation (CMAP) span from 1979 to 1999. Monthly global Special Sensor Microwave Imager
(SSM/I)-based bulk aerodynamic ocean evaporation estimates span from June 1987 to December 1999.
Global terrestrial evapotranspiration rates are estimated over a multidecade period (1975–99) using a global
land model simulation forced by bias-corrected reanalysis data. Monthly total precipitable water (TPW)
from the NASA Global Water Vapor Project (NVAP) spans from 1988 to 1999.

The averaged annual global precipitation (P) and evaporation (E ) estimates are out of balance by 5% or
24 000 (metric) gigatons (Gton) of water, which exceeds the uncertainty of global mean annual precipitation
(��1%). For any given year, the annual flux imbalance can be on the order of 10% (48 000 Gton of water).
However, observed global TPW interannual variations suggest a water flux imbalance on the order of 0.01%
(48 Gton of water)—a finding consistent with a general circulation model (GCM) simulation. Variations in
observationally based global P and E rates show weak monthly and interannual consistency, and depending
on the choice of ocean evaporation data, the mean annual cycle of global E � P can be up to 5 times larger
to that of TPW. The global ocean annual evaporation rates have as much as a �1% yr�1 increase during
the period analyzed (1988–99), which is consistent in sign with most transient CO2 GCM simulations, but
at least an order of magnitude larger. The ocean evaporation trends are driven by trends in SSM/I-retrieved
near-surface atmospheric humidity and wind speed, and the largest year-to-year changes are coincident with
transitions in the SSM/I fleet.

In light of (potential) global water cycle changes in GCM projections, the ability to consistently detect or
verify these changes in nature rests upon one or more of the following: quantification of global evaporation
uncertainty, at least a twofold improvement in consistency between the observationally based global pre-
cipitation and evaporation variations, a two order of magnitude rectification between annual variations of
E � P and precipitable water as well as substantial improvements in the consistency of their seasonal cycles,
a critical reevaluation of intersatellite calibration for the relevant geophysical quantities used for ocean
evaporation estimates, and the continuation of a dedicated calibration in this regard for future satellite
transitions.

1. Introduction

Among the most compelling global climate change
manifestations would be an intensification of the global
water cycle, characterized by increased global precipi-
tation, evaporation, river discharge, and exacerbations
of extreme hydrologic regimes, such as floods and
droughts. The underpinning question is to what extent

global climate change (anthropogenic or natural) en-
tails an associated water cycle response, which is fun-
damentally a manifestation of changes in event-based
characteristics (i.e., storms and dry periods) and pro-
cess-level biogeophysics (i.e., evapotranspiration). To
date, many studies have diagnosed the existence and
tested the significance of secular trends in particular
hydrologic variables and events over a wide range of
spatiotemporal scales (e.g., Groisman et al. 2004, 2005;
Roy and Balling 2004; New et al. 2001; Diaz et al. 2001;
Verschuren et al. 2000; Wentz and Schabel 2000;
Lettenmaier et al. 1994). In addition, the sensitivity of
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hydrologic states and fluxes to climate variations (e.g.,
Soden 2000; Curtis et al. 2001; Mischwaner and Dessler
2004), as well as implications of the observational un-
certainty in global hydrologic simulations (e.g., Fekete
et al. 2004), have been examined. In other studies, ob-
served and modeled trend and variability diagnostics
have been compared (e.g., Bosilovich et al. 2005; Kik-
tev et al. 2003; Soden 2000) and hydrologic products
from model reanalyses assessed (e.g., Trenberth and
Guillemot 1998; Roads et al. 1999). Finally, investiga-
tions with climate models have provided insights as to
plausible changes that can be expected in the global
water cycle under anthropogenically forced climate
change (e.g., Yang et al. 2003; Räisänen 2002; Milly et
al. 2002; Allen and Ingram 2002). Underpinning all
these studies is an unambiguous requirement for cli-
mate-quality, globally complete observations of the key
water cycle rates (i.e., precipitation and evaporation)
and storages (e.g., water vapor). Regardless of the ex-
tent to which multiple sources of data (i.e., in situ or
remotely sensed) will be used to construct these fields,
it is reasonable to expect satellite-based measurements
to provide a substantial portion of the information, par-
ticularly in areas where on-site measurements are
sparse or impractical. However, a key issue that re-
mains is an assessment of the degree to which our sat-
ellite-based observational capabilities provide a bal-
anced, consistent global water cycle depiction. A wealth
of satellite data, data assimilation, and model capabili-
ties has been developed over the past few decades in
support of this goal. Furthermore, a call for this type of
analysis has also been suggested more than a decade
ago (e.g., Kinter and Shukla 1990), in addition to more
recent charges by the scientific community (e.g., Horn-
berger et al. 2001; Houser and Entin 2005).

The purpose of this study, therefore, is to assess the
capability of a global data compilation, largely satellite
based, to faithfully depict global water fluxes, and the
extent to which their spatiotemporal variations are con-
sistent to each other and to complementary water stor-
age variations. The analysis will also explore the exis-
tence of large global-scale signals and/or trends in the
data and ascertain their causes. In the next section, the
observationally based data and model calculations used
for this study are described. Data analyses are given in
section 3, and concluding remarks and future observa-
tional challenges and prospects are given in section 4.

2. Data

a. Global water budget synthesis inputs

Data were collected for this study deliberately from
disparate satellite-based sources with the intent to con-

struct global water cycle budgets and rates, keeping in
mind that most blended global data products combine
different information over land than over ocean re-
gions. As such, this analysis focuses on six core datasets:

• the Global Precipitation Climatology Project
(GPCP) version 2,

• the Climate Prediction Center (CPC) Merged Analy-
sis of Precipitation (CMAP),

• Goddard Satellite-based Surface Turbulent Fluxes
version 2 (GSSTF),

• Hamburg Ocean Atmosphere Parameters and Fluxes
from Satellite data (HOAPS),

• Center for Ocean–Land–Atmosphere Studies
(COLA) Global Offline Land surface Datasets
(GOLD), and

• National Aeronautics and Space Administration
(NASA) Global Water Vapor Project (NVAP).

Recently, Mehta et al. (2005) evaluated a subset of
the above-mentioned observationally based datasets,
and found that the degree of consistency in the result-
ing annual cycle of cross-equatorial freshwater trans-
port is dependent to the choice of the global precipita-
tion datasets analyzed. Furthermore, their analyses un-
derscored the important role the oceans play in the
global freshwater budget. Their analysis focused pri-
marily on the annual cycle of the global water budget
collection, and emphasize that a more quantitative
evaluation was not possible due to a lack of error esti-
mates in the global precipitation (P), evaporation (E),
and their differences (E � P). Here, we address some
of these shortcomings by considering a larger selection
of observationally based datasets, and focus on the in-
terannual variations, trends (if any), and balances of the
key quantities—judged against quantitative global pre-
cipitation error estimates. To supplement this analysis
in terms of a “baseline of consistency” among the dis-
parate global water flux observational estimates, global
water fluxes from a multidecadal simulation produced
by an atmospheric general circulation model (AGCM)
are also considered. A brief description of each dataset
follows here, with references pointing to more detailed
documentation.

The GPCP version 2 monthly precipitation dataset
(Adler et al. 2003) is a globally complete precipitation
analysis that is produced by blending low-orbit micro-
wave and geosynchronous infrared satellite retrievals
with surface gauge observations. The data are projected
on a 2.5° � 2.5° grid and span the years 1979 to the
present. However, the microwave satellite retrievals
were available only from 1987 to the present. Monthly
merged precipitation random error estimates have also
been constructed based on the techniques of Huffman
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(1997). Many other satellite-based, in situ, and blended
global precipitation estimates exist, and have been suc-
cessful at identifying key regional patterns of precipi-
tation anomalies associated with major modes of cli-
mate variability, such as El Niño–Southern Oscillation
(ENSO; e.g., Kidd 2001 and New et al. 2001 provide
nice summaries). Although a recent precipitation–
algorithm comparison effort (Adler et al. 2001) indi-
cates the range of global-scale precipitation estimates
(considering all satellite, in situ, model-based, and cli-
matological products available) is as large as a factor of
2–3, the merged data products (such as GPCP and
CMAP) provide the overall “best” results. CMAP (Xie
and Arkin 1997) is another global precipitation product
that serves to combine all relevant satellite and in situ
data. Yin et al. (2004) describe key distinctions between
GPCP and CMAP. Among the more notable differ-
ences is the use of atoll data. GPCP chooses not to use
these data, and as such, there is a 16% bias when judged
over these regions. On the use of atoll data, Adler et al.
(2003) states, “it is possible that the satellite technique
is underestimating the precipitation, but there is also
the possibility that the atoll gauges are not completely
representative of open-ocean precipitation. Because of
this question and the fact that the atoll stations are only
located in the western Pacific Ocean and are, therefore,
not representative of the entire tropical ocean, the
GPCP dataset has not been adjusted . . . ” The results
of Yin et al. (2004) support this decision by finding that
the GPCP data are more accurate in their over-ocean
diagnostics. Nevertheless, the debate on the represen-
tativeness of the atoll data will continue. Notwithstand-
ing issues regarding data-source selection, both datasets
have significant deficiencies in resolving orographic ef-
fects (e.g., Basist et al. 1994; Nijssen et al. 2001). This
poses a challenge for the various global collection ef-
forts to ultimately augment. However, agency-level ef-
forts involving coordinated, multiple investigations are
under way to do so (e.g., Houser and Entin 2005), and
thus more accurate and comprehensive global precipi-
tation data, in this regard, are foreseeable.

The GSSTF dataset (Chou et al. 2003) contains grid-
ded fields at 1° � 1° resolution of daily, monthly, and
annual bulk aerodynamic estimates of global ocean
heat fluxes. HOAPS (Fairall et al. 1996; Bentamy et al.
2003; data available through the World Data Center for
Climate, Hamburg, Germany, see online at http://cera-
www.dkrz.de/CERA/) is quite similar in its construc-
tion to the GSSTF data. For both ocean datasets, sat-
ellite-based data [e.g., from the Special Sensor Micro-
wave Imager (SSM/I)] are used to derive an ocean
latent heat flux estimate based on the bulk aerody-

namic formulation (no-slip conditions at the surface)
given by

LH � �L�CE�V��Qs � Qa�, �1�

where LH is the latent heat flux (W m�2), � is the
density of air, CE is the bulk transfer coefficient at the
reference height, |V| is the wind speed at a reference
height (�10 m), Qa is the specific humidity at the ref-
erence height, Qs is the saturation specific humidity
that is a function of sea surface temperature (SST), and
(Qs � Qa) is the sea–air humidity difference. The value
of CE is adjusted according to stability and salinity (for
GSSTF only) conditions. Furthermore, GSSTF uses
SSM/I version 4 wind speed products (Meissner et al.
2001); on the other hand, HOAPS uses the Goodberlet
algorithm (Bentamy et al. 1999) with SSM/I brightness
temperature data. For Qa, GSSTF employs a second-
order EOF expansion to fit a humidity profile with
(version 4) SSM/I precipitable water retrievals, while
HOAPS2 uses an improved Schulz inverse model (Ben-
tamy et al. 2003) with SSM/I brightness temperatures.
To convert these latent heat flux estimates to water flux
units, we apply the following relation:

Eo � L�
� 1LH, �2�

where Eo is the ocean evaporation rate, and L	 is the
latent heat of vaporization (in this study, assumed con-
stant at its 20°C value � 2.45 � 106 J kg�1). Deviations
about its assumed constant value (at 20°C) vary by
�2% corresponding to a 
20°C change. However,
when considering the high correlation between tem-
perature and latent heat flux over oceans (i.e., generally
speaking, warmer ocean regions will have higher latent
heat fluxes), the resulting biases (using the constant
value of L	 above) between warm and cold ocean re-
gions largely offset. So the overall effect on the global
ocean estimate is likely less than 1%. Other ocean
evaporation estimates exist based on bulk aerodynamic
methods (this study using the GSSTF and HOAPS
data), which have outstanding issues (e.g., Curry et al.
2004). However, most comparison studies to date, using
limited evaluation data (e.g., Kubota et al. 2003), indi-
cate that the GSSTF algorithm is not biased compared
to other bulk estimates (e.g., Brunke et al. 2003; Curry
et al. 2004). Moreover, the GSSTF dataset has skillfully
identified key regional variabilities of ocean evapora-
tion, such as those tied to westerly wind bursts as ob-
served by the Tropical Ocean Global Atmosphere
Coupled Ocean–Atmosphere Response Experiment
(TOGA COARE) fluxes (e.g., Chou et al. 2000).

GOLD is a global, spatially, and temporally continu-
ous land surface dataset that spans 1979–99 (Dirmeyer
and Tan 2001). A land surface scheme (LSS) is run at a
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T63 equivalent grid box resolution (1.875° � �1.875°)
without feedback to an atmospheric circulation model,
creating a self-consistent, global, land surface state time
series. The meteorological reanalysis required to tem-
porally integrate the model was obtained from the Na-
tional Centers for Environmental Prediction–National
Center for Atmospheric Research (NCEP–NCAR) re-
analysis, and the precipitation was further bias cor-
rected according to the monthly CMAP climatology.
The product used for this study is in the form of
monthly mean grids over all ice-free land points. Re-
cently, Dirmeyer et al. (2004) has demonstrated that
GOLD performs consistently well, and in most cases
superior, to other long-term land surface model,
coupled land–atmosphere reanalyses soil-wetness prod-
ucts, and satellite-derived estimates. Furthermore, an
updated version of the simulation—GOLD2 (P. A.
Dirmeyer 2005, personal communication) has been re-
cently provided for evaluation. The GOLD2 simulation
differs from its predecessor in that it represents simu-
lations from an upgraded version of the COLA Simpli-
fied. Simple. Biosphere (SSiB) land model, driven by
the 40-yr European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis (ERA-40;
e.g., Hollingsworth and Pfrang 2005) data with the pre-
cipitation scaled to agree with the Climate Research
Unit (CRU) precipitation on the monthly mean time
scale. The entire simulation spans the years 1959–2002,
with the years 1957–58 used for spinup. Thus, the
GOLD2 simulation may be used similarly as in GOLD
for the global budget synthesis. Nevertheless, the
GOLD evapotranspiration products are model-based
estimates. While the capability to produce satellite-
based land evaporation estimates has seen considerable
strides recently (e.g., Diak et al. 2004), this particular
study requires a long-term estimate of global water
fluxes that sufficiently overlaps the ocean and atmo-
spheric data, which at present is unavailable using sat-
ellite-based techniques. The GOLD datasets are among
many model-based land evaporation estimates (e.g.,
Rodell et al. 2004) that have recently emerged. How-
ever, in the context of gauging the range of land model
estimates (with potentially some measure of “uncer-
tainty”), the current Global Energy and Water Cycle
Experiment (GEWEX) Global Soil Wetness Project
Phase 2 (GSWP2; Dirmeyer et al. 2002) provides global
simulations of continental evaporation, as estimated by
as many as 13 different land models, for the years 1986–
95 (a shorter time period than that considered in this
study) forced with the International Satellite Land Sur-
face Climatology Project, Initiative II (ISLSCP II) at-
mospheric variables and soil–vegetation parameters.

Preliminary analysis of the GSWP2 baseline and sensi-
tivity simulations indicates the range of simulated glob-
al land evaporation is �30% of the model mean, with
the COLA SSiB model (used in both GOLD products)
falling on the low end of the model range. However,
this is not necessarily a robust estimate of actual global
land evaporation uncertainty, but continuing GSWP2
analysis will address this and be the subject of a forth-
coming paper. All of these global land modeling and
assimilation efforts combined with the global-scale Co-
ordinated Enhanced Observation Project (CEOP;
Leese 2001) will lead to more robust quantifications of
global, continental evaporation and efforts are under
way to do so.

The NVAP total precipitable water (TPW) dataset
(Vonder Harr et al. 2003; Randel et al. 1996) was con-
structed through a blending of different products/
retrievals over land and oceans from the Television and
Infrared Operational Satellite (TIROS) Operational
Vertical Sounder (TOVS), SSM/I, and radiosonde ob-
servations. The data are available at daily temporal
resolution on a geographical 1° � 1° resolution. For the
analysis that follows, monthly averaged quantities are
used for the years 1988–99. The NVAP data are con-
tinually extended, updated (Vonder Harr et al. 2003),
and evaluated (e.g., Amenu and Kumar 2005; Tren-
berth et al. 2005). Notably, Trenberth et al. (2005) in a
multidataset evaluation have found important over-
ocean trends in NVAP and other globally based water
vapor datasets that use SSM/I-based water vapor prod-
ucts. Their results also imply that NVAP may have
questionable quality in over-land water vapor esti-
mates, but the lack of a “gold standard” by which to
unequivocally judge the datasets remains a challenge in
these types of evaluations.

b. Climate model simulation

The NASA Seasonal-to-Interannual Prediction Proj-
ect (NSIPP) AGCM data were used for comparison to
measure data analyses (Bacmeister et al. 2000). The
model was developed for climate simulation and pre-
diction and uses remotely sensed observations to en-
hance the predictability of several seasonal-to-
interannual signals, notably ENSO. The model uses
SST observations as ocean boundary conditions and
currently maintains an output of nine ensemble runs
extending from 1930 to 2000. We emphasize that the
use of this data is not to evaluate the behavior of the
simulation, but rather we use the consistency of the
model-derived global quantities to elucidate the
strengths and deficiencies in the disparate observation-
ally based estimates.
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3. Analysis

On the global scale, the water cycling “rate” may be
quantified through surface evaporation fluxes to the
atmosphere from the ocean and land surface or, equiva-
lently, precipitation fluxes from the atmosphere to the
surface. The atmospheric branch of the global water
cycle may be expressed as

d�Q�
dt

� �E� � �P�, �3�

where the brackets represent the globally integrated
total column precipitable water (Q), precipitation rate
(P), and evaporation rate (E). Given this, our analysis
in a strict sense is from an atmospheric perspective, be-
cause the disparate observationally based estimates
that have been compiled (i.e., the GPCP, CMAP,
GSSTF, HOAPS, and GOLD datasets) serve to evalu-
ate the closure of (3). Other global budget equations
from the perspective of the land (water storage) and
ocean (salinity) can be written that encapsulate the
global water cycle, and subsequently analyzed. While
the near-term prospects of global satellite retrievals will
allow us to address the ocean budget (discussed in more
detail in the concluding section), the current global data
collection of satellite-based estimates can only address a
global water budget equation as given by (3). For some
of the geographical analysis that follows, the GOLD,
HOAPS, GPCP, and CMAP datasets were linearly in-
terpolated to align all the datasets on the same 1° � 1°
grid. However, to partition all the fluxes into land and
ocean regions for a global budget framework, the
ISLSCP land–ocean mask was used at the 1° � 1° reso-
lution (available online at http://islscp2.sesda.com/
ISLSCP2_1/html_pages/groups/ancillary/land_water_
masks_xdeg.html), which is basically an aggregation of

the World Vector Shoreline data of Soluri and Wood-
son (1990). Based on this mapping, the global land
cover area, Aland, is equal to 1.48 � 1014 km2 and the
global ocean cover area, Aocean, is equal to 5.1 � 1014

km2 for a total global area of 6.58 � 1014 km2. Then,
global, area-weighted averaged flux values are obtained
for each flux, in their native resolution, as unit water
mass per unit time per unit area (i.e., kg m�2 day�1),
noting that these units are equivalent (assuming con-
stant water density) to the more conventional depth per
unit time (i.e., mm day�1). The equivalent “global”
mass fluxes are then obtained by integrating the unit-
area flux by the corresponding land, ocean, and global
land areas. In terms of the temporal span of this analy-
sis, overlapping all the disparate time series provide
global monthly precipitation and evaporation mass flux
estimates spanning the years 1988–99.

a. Annual mean and seasonality

The mean annual results are summarized in Table 1.
Considering the global budget given by (3), the values
of mean annual, global precipitation (both GPCP and
CMAP), and evaporation estimates (using GSSTF or
HOAPS) are all within �5% of one another. By taking
the mean value of the global precipitation and evapo-
ration values obtained, a reasonable estimate of the
mean annual rate of the global water cycle, based on
this analysis, would be 4.8 � 1017 kg yr�1 or about 480
000 (metric) Gton of water. The “imbalance” (i.e., dif-
ference) between mean annual global precipitation
(GPCP and CMAP) and evaporation (based on GSSTF
or HOAPS) is equivalent to missing about 24 000 Gton
of water (or a global mean depth of 3.65 cm), which
exceeds the global precipitation error estimate. The
global precipitation of GPCP is higher than CMAP for

TABLE 1. Annual mean global precipitation (P) and evaporation (E ) fluxes (units of kg yr�1) based on the period 1988–99, during
which global precipitable water decreases by 2.0 � 1014 kg (see Fig. 6). For precipitation, results based on (top subrow) GPCP and
(bottom subrow) CMAP are provided. For evaporation, (top subrow) GOLD and the (bottom subrow) GOLD2 land results are shown,
as well as the (top subrow) GSSTF and (bottom subrow) HOAPS ocean evaporation estimates. E � P using the various combinations
of precipitation, land–ocean, and evaporation datasets is labeled accordingly. Error bars for the global, annual mean precipitation
estimates are shown. For the global E � P results, the average of GOLD and GOLD2 (denoted as “|GOLD|”) are used.

Precipitation (P) Evaporation (E ) E � P

Land GPCP: 1.05E  17 � 0.02E  17 GOLD: 0.64E  17 |GOLD| � GPCP: �4.2E  16
CMAP: 1.02E  17 � 0.02E  17 GOLD2: 0.62E  17 |GOLD| � CMAP: �3.9E  16

Ocean GPCP: 3.80E  17 � 0.06E  17 GSSTF: 4.41E  17 GSSTF � GPCP: 6.1E  16
HOAPS � GPCP: 1.3E  16

CMAP: 3.72E  17 � 0.04E  17 HOAPS: 3.93E  17 GSSTF � CMAP: 6.9E  16
HOAPS � CMAP: 2.1E  16

Global GPCP: 4.85E  17 � 0.06E  17 GSSTF  |GOLD|: 5.04E  17 (GSSTF  |GOLD|) � GPCP: 1.9E  16
(GSSTF  |GOLD|) � CMAP: 3.0E  16

CMAP: 4.74E  17 � 0.04E  17 HOAPS  |GOLD|: 4.56E  17 (HOAPS  |GOLD|) � GPCP: �2.9E  16
(HOAPS  |GOLD|) � CMAP: �1.8E  16
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the period of this study (1988–99), but marginally so
when viewed by their error estimates. To determine the
global, annual-mean error estimates of precipitation,
the area-weighted mean of the monthly gridded error
fields were taken, and then time averaged (and con-
verted to a global flux). The error was then scaled by
the square root of an effective number of degrees of
freedom estimated from the GPCP and CMAP data
(G. J. Huffman 2005, personal communication). These
effective degrees of freedom (for both GPCP and
CMAP) were obtained by a procedure similar to that of
Schlosser and Kirtman (2005, see their appendix) and
our calculation encompasses the same underlying con-
siderations as in Janowiak et al. (1998, see their appen-
dix A). Our technique calculates a decorrelation length
scale, l, at every grid point of the data, and is based on
the distance by which the temporal correlation between
two grid points falls below a threshold value (in this
study, we use the 99% confidence level). The median
value of the gridded estimates is then taken, and a re-
duced resolution of “independent” grid points is then
constructed as a configuration of points that are equally
spaced l grid points apart in the latitude and longitude
directions. The resulting degrees of freedom estimate,
n, is then taken as the total number of grid points in this
reduced resolution representation.

By noting in (3) that global atmospheric precipitable
water variations are small compared to global flux
terms (substantiated in the next section), particularly
when averaged over the total span of the data (12 yr),
we may write the following:

�Pl� � �El� � � ��Po� � �Eo��.

The subscripts l and o denote the land and ocean com-
ponents, respectively. The above expression reflects a
quasi-consistency relation that the ocean’s evaporation
over precipitation excess is approximately balanced
(i.e., to within a few percent) by the land’s precipitation
over evaporation excess. Stated differently, the expres-
sion represents that, on the global scale, total runoff
from the continents is largely in balance with the net
transport of water (vapor) by the atmosphere from
over-ocean to overland regions (as also inferred, e.g.,
from Fig. 12.2 in Peixoto and Oort 1992). Given the
values in Table 1, the disparate precipitation and
evaporation data sources do not satisfy the relation
very well; the mean annual values are only within
�20% for GPCP and 45% for CMAP. A (small) part of
this large difference could be explained by a trend in
water storage. However, analyses of the GOLD data
indicate only very small trends in global total soil-
column soil water storage (see Fig. 7 of Dirmeyer et al.
2004) as well as for any of the forcing data (not shown)

that would support any simulated trend. Furthermore,
very small trends in global TPW are seen (described in
the next section). However, a remarkable effect is the
choice of global ocean evaporation estimate on the
ocean E � P diagnostic, with at least a threefold change
in the global ocean E � P value resulting between the
use of GSSTF and HOAPS.

An additional quasi-consistency relation can also be
written as

�Pl�  �Po� � �El�  �Eo�.

This expression reflects the conception that for the an-
nual mean global water cycle, global precipitation is
almost entirely “supplied” by evaporation. As such, the
ratios of the ocean and land evaporation components
against global precipitation from Table 1 suggest that
GSSTF ocean evaporation would account for �91%
while the HOAPS evaporation is �76% (and continen-
tal evaporation for the remaining 9% and 24%, respec-
tively) of global precipitation.

There also exists a robust heritage of studies that
have provided estimates for annual global water cycle
statistics. These studies have utilized a variety of differ-
ent techniques to estimate global water fluxes and pri-
marily use records from in situ measurements, radio-
sonde data, global river gauge networks, and/or re-
analysis. When judged against these (Figs. 1 and 2), this
study’s mean annual global precipitation and evapora-
tion fluxes fall within the previous estimates’ range.
Looking closer however, the legacy of estimates is char-
acterized by the lowest values occurring in early part of
the twentieth century, and among the highest values in
the latter half of the twentieth century. Furthermore,
the land and ocean components of evaporation and pre-
cipitation compiled from this study display considerable
differences. When compared to the legacy of the stud-
ies, the GPCP and CMAP estimates from this study are
among the lowest mean annual land precipitation rates
(�1.0 � 1017 kg yr�1). Given that the precipitation
forcing was “bias corrected” with CMAP data and
drove the model-based land evaporation estimate, it is
not surprising that this study also provides one of the
lowest land evaporation estimates (between 6.2 and
6.4 � 1016 kg yr�1), particularly when viewed against
the more recent estimates. Taking their residual and
given the (aforementioned) negligible trends in the
simulated GOLD global soil water storage, the land
precipitation over evaporation excess is nearly equiva-
lent to mean annual global river discharge. The values
obtained with both the GPCP and CMAP precipitation
encompass some of the more recent and explicit global
river discharge estimates (e.g., Oki et al. 1999; Fekete et
al. 2002; Nijssen et al. 2001). They are both slightly
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FIG. 1. (top) Mean annual P and (bottom) E as estimated by this study (using GPCP and CMAP data) and taken from a selection
of previous publications. All estimates prior to 1970 were selected for this figure from the survey done by Korzun (1978), and explicit
references of those studies are contained therein. In this adaptation of the Korzun survey, only the most recent estimate from each
author is considered.
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higher than the most recent and quite comprehensive
estimate obtained by Dai and Trenberth (2002)—given
as 37 288 � 1016 � 662 � 1016 kg yr�1. Given this, the
CMAP estimate falls marginally outside the error range
(� �2%). However, the error obtained by Dai and
Trenberth (2002) was estimated based on a root sum-
squared variance of long-term annual flows from 921
rivers, and then scaled by an empirical coefficient (that
translates station flows to river mouth flows). There-
fore, it is quite likely that this error estimate has some
degree of uncertainty as well, particularly when viewed
against the conventional wisdom that most streamflow
records are accurate to within 10%–20% (Fekete et al.
2002). Given all these considerations, we must call into
question the P � E rates obtained for the ocean (Table
1), and thus are either caused by deficiencies in precipi-
tation and/or evaporation estimates over the ocean.
The analysis in a later section (3c) will indicate that it is
likely caused by uncertainties regarding the ocean
evaporation estimates.

Looking closer at the legacy of global river discharge
estimates, some notable characterizations can be made.
First, the lowest and highest estimates of global river
discharge are seen in the earlier published studies (i.e.,
in the first half of the twentieth century). In the latter
half of the twentieth century, the scatter among the
estimates of annual global river discharge is smaller.
However, generally speaking the annual mean dis-
charge scatter exceeds the interannual global river dis-
charge variability. Based on a continuous annual global
runoff time series by Korzun (1978) that spans the years
1918–67, the annual global runoff standard deviation is
1.25 � 1015 kg yr�1. However, the standard deviation of
the annual mean values documented over the same
time period (1918–67, as given by Fig. 2) is 4.4 � 1015 kg
yr�1. During the latter half of the twentieth century,
this characterization does not improve much. From
1966 to this study, the standard deviation of the pooled
annual mean estimates is 4.3 � 1015 kg yr�1, while the

global river discharge standard deviation based on
Global Runoff Data Center (GRDC) records for the
years 1986–95 (Fekete et al. 2002; Fekete et al. 1999) is
2.1 � 1015 kg yr�1. The GRDC global runoff data are
based on a blend of 390 station observations with model
calculations that cover the major global river basins. In
calculating its standard deviation of interannual varia-
tions, the annual discharge data were detrended (based
on a least squares, linear regression fit). The detrended
value is lower than the standard deviations obtained in
this study (two uppermost, right-hand cells in Table 2).

The global geographic P � E distributions (Fig. 3)
reveal some important characteristics. First, the conti-
nental regions are dominated by excess precipitation, as
expected. Furthermore, continental regions showing an
excess of evaporation to precipitation are found in the
major desert regions of Africa (northern Sahel region
and the southern part of the Saharan Desert region) as
well as the tundra region of the Tibetan Plateau, again
as one would intuitively expect. The regions of maxi-
mum evaporation excess are confined to the subtropical
ocean regions (for all data combinations). The tropical
ocean regions are characterized by an abrupt shift to
substantial excess precipitation. This is consistent with
the coincidence of the ITCZ and relative minima
evaporation rates (cf. Seager et al. 2003). The distinc-
tions between the GPCP- and CMAP-derived fields are
seen mostly in the extratropics. The GPCP result gives
a greater precipitation excess over most of the conti-
nental regions (consistent with the greater P � E value
over land in Table 1), and the CMAP field indicates
weaker precipitation excess (or a reversal to evapora-
tion excess) compared to GPCP’s precipitation excess
over extratropical oceans (consistent with larger nega-
tive values of P � E over the ocean in Table 1). The
most salient differences between the use of the GSSTF
and HOAPS ocean evaporation datasets are seen
largely in the subtropics. The largest changes (i.e., de-
crease from GSSTF to HOAPS) are found in the sub-

FIG. 2. Mean annual water exchange between the ocean and land (via atmospheric transport or river discharge) as estimated by this
study and prior studies. As in Fig. 1, estimates prior to 1970 are selected and adapted for this figure from the survey of Korzun (1978).
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tropical South Pacific and Atlantic Oceans. The use of
the HOAPS estimates also leads to a more homog-
enous global pattern of P � E (weaker highs and lows)
as compared to the GSSTF result (middle and bottom
panel of Fig. 3).

Looking at the mean annual cycles of the global wa-
ter fluxes, several characterizations can be made when
viewed against the annual mean cycle of TPW changes.
The GPCP and CMAP mean annual cycles (Fig. 4, top
panel) have significant differences (when judged by
their error estimates). CMAP gives larger precipitation
rates for June (marginally) and July, while GPCP has
larger precipitation rates for February, March, and Oc-
tober–December. Given these distinguishing differ-
ences, CMAP displays a modest seasonality, with its
highest rate in July and lowest in February. Aside from
the low February rate, GPCP shows no well-defined
seasonality. However, regardless of these differences,
the resulting amplitudes of the global E � P annual
cycles (Fig. 4, bottom panel), using any combinations of
the data, are considerably larger than what the monthly
global TPW changes would suggest. The most excessive
global E � P amplitude results using GPCP and GSSTF
data. However, the GPCP/GSSTF results are also able
to achieve more consistent values (with respect to the
TPW changes) during the Northern Hemisphere winter
months. Looking at the HOAPS estimates, while lower
amplitudes (cf. GSSTF/GPCP) of the global E � P
annual cycle result, the robust low bias of the HOAPS
estimate (relative to the GPCP and CMAP precipita-
tion fields) is clearly evident.

The zonal features of the annual cycle of E � P (Fig.
5) show a modest sensitivity to the choice of data used.
However, for all data configurations, high-latitude and
equatorial precipitation excess as well as subtropic and
low- to midlatitude evaporation excess (with a modest
Northern Hemisphere seasonality) is seen. The inter-
tropical convergence zone (ITCZ) progression is also

quite evident. The most distinguishing differences be-
tween the GPCP- and CMAP-derived estimates are
that the CMAP field shows weaker atmospheric drying
(i.e., negative E � P) at high latitudes, but more ubiq-
uitously stronger atmospheric drying in the Tropics.
These results are in good agreement with the zonal
differences in GPCP and CMAP shown by Yin et al.
(2004, their Fig. 4). The most pronounced effect of re-
placing GSSTF with the HOAPS data is a rather ubiq-
uitous weakening of evaporation excess. Furthermore,
the use of GSSTF with GPCP results in a substantial
weakening of E � P seasonality in the northern sub-
tropics.

b. Interannual variability

While the closure between disparate estimates of
mean annual global precipitation and evaporation is
reasonable, their year-to-year changes (Fig. 6) reveal
more notable discrepancies. The correlations between
interannual global precipitation (GPCP or CMAP) and
global evaporation (GSSTF or HOAPS plus estimated
continental evaporation) variations are quite low (rang-
ing from 0.44 to �0.6), and even if the GSSTF annual
data trend is removed (through a linear, least squares
fit), the correlation increases to only as high as 0.59 for
GPCP and 0.34 for CMAP (both with GSSTF-based
global evaporation). Similar results are seen for corre-
lation between monthly variations. This is in contrast to
the AGCM simulations, where the interannual global
precipitation and evaporation estimates show a very
strong correlation (0.95). Moreover, observed global
TPW changes cannot account for the trend or interan-
nual variability in global precipitation and evaporation
differences. The year-to-year changes in mean January
global precipitable water, shown in Fig. 6, are on the
order of 1013 kg yr�1, and the time series is quite con-
sistent with other recent global analyses conducted
(e.g., Amenu and Kumar 2005; Trenberth et al. 2005).

TABLE 2. Std devs of annual mean (1988–99) global precipitation (P) and evaporation (E ) mass flux statistics. For precipitation, the
results based on (top subrow) GPCP and (bottom subrow) CMAP are provided. For evaporation, boldface indicates that the detrended
(linear, least squares fit) global, annual ocean evaporation time series was used for the calculation (kg yr�1).

Precipitation (P) Evaporation (E ) E � P

Land GPCP: 2.9E  15 GOLD1: 0.7E  15 |GOLD| � GPCP: 3.1E  15
CMAP: 3.1E  15 GOLD2: 0.8E  15 |GOLD| � CMAP: 3.2E  15

Ocean GPCP: 5.9E  15 GSSTF: 2.15E  16 6.3E � 15 GSSTF � GPCP: 5.5E � 15
HOAPS � GPCP: 8.3E � 15

CMAP: 5.0E  15 HOAPS: 1.48E  16 1.0E � 16 GSSTF � CMAP: 5.2E � 15
HOAPS � CMAP: 1.2E � 16

Global GPCP: 6.3E  15 |GSSTF  GOLD|: 2.2E  16 6.5E � 15 (GSSTF � |GOLD|) � GPCP: 5.8E � 15
(GSSTF  |GOLD|) � CMAP: 5.7E  15

CMAP: 5.7E  15 |HOAPS  GOLD|: 1.5E  16 1.0E � 16 (HOAPS � |GOLD|) � GPCP: 0.7E � 15
(HOAPS  |GOLD|) � CMAP: 1.0E  16
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FIG. 3. Global distribution of the annual mean (1988–99) difference between P and E (mm day�1).
(top) The field obtained using GPCP precipitation and GSSTF  GOLD evaporation, (middle) the
result with CMAP precipitation and GSSTF  GOLD evaporation, and (bottom) the result for CMAP
precipitation and HOAPS  GOLD evaporation.
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FIG. 4. Mean annual cycle of global water fluxes and total precipitable water changes based on the 1988–99 period of (top) data and
(bottom) E � P and TPW changes. Global estimates of precipitation (the GPCP and CMAP data) and evaporation (using GOLD,
GSSTF, and HOAPS) are described in text. Error bars are provided for the global precipitation estimates, and represent the area-
weighted, global average of the gridded random error estimates (scaled by the effective degrees of freedom.
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FIG. 5. Averaged annual cycles of zonally integrated evaporation
(based on GSSTF, HOAPS, and GOLD data) minus precipitation
(based on GPCP or CMAP). Units are in 1013 kg day�1. Compared
to (c), the (GOLD  HOAPS) � CMAP result (not shown here)
depicts the identical differences seen between (a) and (b).
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However, the annual, global E � P rates are on the
order of 1015 kg yr�1 (even if not considering the evapo-
ration trend). Moreover, given the precipitation error
bars, the E � P rates could not achieve an accuracy that
would explain the annual TPW changes. The disparity
between estimated E � P and TPW is unlike the sub-
stantially tighter (mass balance) agreement for the re-
spective AGCM interannual and monthly variations
(not shown). Moreover, global TPW is typically on the
order of 1016 kg, and therefore most of the annual glob-
al E � P values (also on the order of 1016 kg yr�1)
indicated by Fig. 6 are unacceptable. It should be noted
that estimates of TPW error are absent from this dis-
cussion. However, our use of the NVAP data was to
illustrate the order of magnitude consistency that
should be seen in the global water fluxes. As we show,
the global, annual water vapor changes are about two
orders of magnitude lower than annual E � P rates. So
the acceptance of these annual, global water vapor
changes as relative “truth” would be invalid only if the
water vapor error was about two orders of magnitude
larger than its annual variation (shown in Fig. 6); this is
very unlikely.

The GPCP and CMAP global, annual precipitation
estimates are seen to be consistent (i.e., within their
error range) for the years 1988–94, with the exception
of a marginal difference (just outside the error range) in
1993. Their values diverge considerably during the pe-
riod 1995–98, with a rebound tending to a more consis-
tent value in 1999 (though their values are still outside
the uncertainty overlap). However, the most notable
feature of the annual mean time series is the overall
trend seen in global evaporation. The trend rate is
�1% yr�1 using the GSSTF data, and �0.5% yr�1 for
the HOAPS result. These trends are solely caused by
these ocean evaporation estimates, which are derived
mostly from SSM/I-retrieved fields.

There is a notable correspondence between the
larger jumps (i.e., increases) in the global evaporation
estimates and major transitions between SSM/I instru-
ments (e.g., Colton and Poe 1999), the most notable
being the transition between F8 and F11 (beginning of
1992) and the period during and just after the overlap
of the F10, F13, and F14 missions (the F11 mission was
also operational). Further, some of the largest jumps in
the NVAP TPW estimate also correspond closely with

FIG. 6. Annual time series of global water fluxes and TPW. Global estimates of precipitation (the GPCP and CMAP data),
evaporation (the GOLD, GSSTF, and HOAPS data), and TPW are described in text. The left axis denotes water flux values and the
right axis depicts the scale of TPW estimates. The light dashed line denotes the linear (least squares) fit to the global evaporation trend.
Error bars are provided for the global precipitation estimate, and represent the area-weighted, global average of the gridded random
error estimates—scaled by the effective degrees of freedom. The shaded bars at the bottom of the frame denote the time sequence and
durations of all the SSM/I missions (upon which the GSSTF and HOAPS ocean evaporation estimates are based). The lighter shade
of yellow denotes the period in which the F10 SSM/I was in orbit, but data were not used for the NVAP estimates. The vertical red and
blue bars indicate where year-to-year changes coincided with an El Niño or La Niña, respectively. The location of the bold “P” indicates
the approximate timing of the Mt. Pinatubo eruption (15 Jun 1991).
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the noted SSM/I transitions, but show no unambiguous
consistency with the large global evaporation increases
(the only consistent change is from 1997 to 1998). Fur-
thermore, the substantial changes in the processing of
the NVAP retrieval starting in 1993 (Vonder Harr et al.
2003) show no discernable effects to the subsequent
global TPW values. As shown in Fig. 6, the large in-
creases in evaporation and TPW in 1998 as well as the
substantial changes in 1992 are likely a compounded
result of a SSM/I transition, ENSO and (for 1992) the
Mt. Pinatubo eruption (also discussed in Amenu and
Kumar 2005; Trenberth et al. 2005). All but the large
decrease in TPW between 1991 and 1992 is consistent
with ENSO events (i.e., El Niño causes an increase and
La Niña a decrease), but this is probably also affected
by the subsequent global cooling of the Mt. Pinatubo
eruption (Soden et al. 2002).

The anomalies of E � P exhibit distinct patterns dur-

ing El Niño and La Niña events. The most discernable
feature associated with an El Niño is prominent evapo-
ration excess in the northern Tropics and precipitation
excess in the southern Tropics. These excesses are a
result of complementary evaporation and precipitation
anomalies, although the precipitation anomalies are
much stronger (Fig. 7). The analysis also suggests that
the locations of the precipitation and evaporation ex-
cess are reversed prior to El Niño. In particular, the
1998 event finds the precipitation excess, in effect,
“flanked” by evaporation excess that occurs just north
of the equator in the winter prior to an El Niño and
then propagates southward (and subsequently replaced
by the precipitation excess). The La Niña patterns are
not quite as prevalent, but in the two that occur during
the data time span, weaker anomalies of opposite sign
to those seen during an El Niño occur. All of these
ENSO-related E � P features, which are largely a re-

FIG. 7. Monthly zonal integrated anomalies of (a) GOLD  GSSTF evaporation, (b) GOLD  HOAPS evaporation, (c) GPCP
precipitation, and (d) CMAP precipitation. The data are temporally smoothed by performing a running 6-month average (1012 kg
day�1). In (a) and (b) the shaded bars to the left of the frame denote the time sequence and durations of all the SSM/I missions (upon
which the GSSTF ocean evaporation estimates are based). The lighter shade of yellow denotes the period in which the F10 SSM/I was
in orbit, but data were not comprehensively used.
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flection of precipitation anomalies, are consistent with
documented climatological equatorial precipitation be-
havior associated with ENSO (e.g., Diaz et al. 2001;
Curtis et al. 2001).

c. Diagnosis of evaporation trend

The analysis (Fig. 6) indicates a substantial �0.5%–
1% yr�1 global evaporation trend. Although global
summed land and ocean evaporation is shown in Fig. 6,
the trend is exclusively caused by the GSSTF and
HOAPS ocean evaporation estimates. Furthermore, no
complementary global precipitation trend is observed,
and perhaps just as important, the global evaporation
trend falls outside the GPCP and CMAP precipitation
error bars. As previously mentioned, global precipita-
tion error bars are calculated in Fig. 6 as the globally
averaged (area weighted), annual average of the
monthly gridded values—scaled by the effective de-
grees of freedom of the GPCP and CMAP data. As
such, the errors of the global GPCP and CMAP esti-
mates would preclude the global evaporation trend—
given that the GCM and TPW results indicate precipi-
tation and evaporation, variations should be consistent
within the precipitation error range. Inspection of the
NSIPP AGCM simulation indicates that global evapo-
ration and precipitation trends (not shown) exist, but
they are an order of magnitude smaller (�0.1% yr�1)
than the observed ocean evaporation trend. Moreover,
recent analysis (e.g., Räisänen 2002; Allen and Ingram
2002) from the Coupled Model Intercomparison Proj-
ect (CMIP) of global evaporation trends in transient
CO2 experiments using global, fully coupled climate
models also show trends that are (at least) an order of
magnitude smaller. The NSIPP AGCM simulated glob-
al precipitation and evaporation trends are also sub-
stantially more consistent than the observed trends,
which is consistent with their strong temporal correla-
tion (noted in the previous section). Qualitative inspec-
tion of the CMIP results also indicates a similar, tight
consistency in the global evaporation and precipitation
trends. An additional analysis result that highlights the
inconsistency between the observed trends is a lack of
an observed TPW trend. If global evaporation was in-
creasing with steady global precipitation, global TPW
should also increase to store the excess evaporation.
While recent evidence indicates that a ubiquitous in-
crease in TPW (based on SSM/I retrievals alone) is
likely to have occurred during the period considered
here over most oceans (e.g., Trenberth et al. 2005), it is
not globally evident.

These findings suggest the leading explanation of the
above-mentioned discrepancies are likely attributed to
the global evaporation trend. The GSSTF trend is ap-

proximately twice that of HOAPS (Fig. 6), and we
therefore focus our attention to the GSSTF trend. In
doing this, we view the factors contributing to the
GSSTF ocean evaporation trend to be stronger yet
similar with that of HOAPS—as both datasets largely
rely on SSM/I retrievals. The evaporation trend signa-
ture is most evident (especially for GSSTF) in Southern
Hemisphere subtropical regions (Fig. 7). Further diag-
nosis was performed to explore the ocean evaporation
trend source, based on its bulk aerodynamic formula-
tion given by (1). The two main inputs to the formulas,
(Qs � Qa) and |V| both show discernable trends (Figs. 8
and 9 shows GSSTF’s humidity terms separately). As
such, the trends of winds and humidity gradient are
then multiplied within the bulk aerodynamic algorithm.
It is therefore not surprising to see a robust ocean
evaporation trend as a result, particularly for the
GSSTF product. The near-surface wind patterns of
GSSTF (Wentz and Schabel 2000) and HOAPS (Ben-
tamy et al. 1999) are similar, even though both are de-
rived from different retrieval approaches (described in
section 2). The trend in Qa is much stronger for GSSTF.
Overall, Qs patterns (Fig. 9 for GPCP, but HOAPS not
shown) are generally similar, even though different
data and procedures are used for the Qs estimate.
HOAPS uses SSTs based on a subsampling of the Path-
finder Advanced Very High Resolution Radiometer
(AVHRR) data (Bentamy et al. 2003), while the
GSSTF estimate uses SSTs based on the NCEP–NCAR
reanalysis (Chou et al. 2003). The NCEP–NCAR SSTs
are taken from the Reynolds and Smith (1994) data,
and furthermore, this product is used to constrain the
Pathfinder AVHRR product.

The only substantial impact of the Qs differences is a
dramatic drop in the HOAPS near-surface humidity
gradient (Fig. 8) seen in the wake of the Mt. Pinatubo
eruption (i.e., the year following 1 June 1991). This is a
result of the HOAPS usage of AVHRR Pathfinder SST
data (Fig. 10), which does not correct for aerosol ef-
fects. This causes a substantial drop in the HOAPS
evaporation estimate throughout the Tropics for the
remainder of 1991, with subtropical features persisting
well into 1992, and South Pacific tropical anomalies
lasting into 1993. None of these features are seen in any
of the corresponding GSSTF fields. GPCP’s substantial
decreases during 1991 (Fig. 7) do not clearly align with
the Pinatubo eruption. Furthermore, the GPCP anoma-
lies following the Pinatubo eruption show a dominating
El Niño response. Nevertheless, ongoing analyses with
the GPCP product indicate that a (second order) vol-
canic signal in the GPCP data can be extracted through
careful temporal filtering (R. F. Adler 2005, personal
communication).
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Looking more closely at the wind anomalies (Fig. 8),
the shift (from negative to positive) in the overall wind
anomaly sign occurs during 1992—this is in striking cor-
respondence with the transition between the F8 and
F11 SSM/I instruments. This shift in the SSM/I wind
speed is also consistent with the Meissner et al. (2001)
analysis (see their Fig. 1). This shift is preceded by the
most extensive positive wind speed anomaly (that per-
sists through 1990 and most of 1991). Near the end of
the record, wind anomalies maintain their strongest
negative anomalies, and the onset of this period closely
corresponds to the phasing out of F10 and the begin-
ning of F14’s operation. One encouraging feature of the
wind speed record is the strong negative anomalies
about the equator that are coincident with the 1997/98
El Niño (consistent with the breakdown of the trade
winds).

For the humidity gradients, further analysis of
GSSTF’s individual terms Qs and Qa (Fig. 9) shows a
heterogeneous mixture of anomalies and trends, which
results in the more uniform evolution of its Qs � Qa

trend (Fig. 8). The end of the persistent negative Qa

anomaly in 1992 (primarily in the subtropical Southern
Hemisphere) is similar to wind speed in that it corre-
sponds closely to the F8–F11 transition. Overall, the
negative Qa trend is consistent with the positive esti-
mated ocean evaporation trend. However, the corre-
spondence of any shift or change in Qa to the F10/F14
transition period is subtle. In fact, most of the interan-
nual Qa anomaly features consistently follow the SST
anomalies, as expected (Fig. 10). Near the end of the
record, the midlatitude consistency between SST and
Qa is absent, and may be, in part, the background nega-
tive trend (corresponding to SSM/I transitions) domi-
nating any other signal. The consistency of Qs anoma-
lies, as opposed to Qa, to SSTs is much stronger, as
expected (bottom panels of Figs. 9 and 10). Generally
speaking, a gradual trend in Qs is not prevalent (as
opposed to Qa). Nevertheless, the strong positive Qs

anomalies prevalent near the end of the record support
the positive ocean evaporation trend estimate.

According to Chou et al. (1995, 2003), the GSSTF

FIG. 8. Monthly zonal averaged (top) Qs � Qa and (bottom) near-surface wind speed time series anomalies. The data are temporally
smoothed by performing a running 6-month average (g kg�1 and m s�1). The shaded bars to the left of each frame denote the time
sequence and durations of all the SSM/I missions.
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FIG. 9. Monthly zonal averaged (top) Qa and (bottom) Qs time series anomalies based on the GSSTF data. The
data are temporally smoothed by performing a running 6-month average (g kg�1). The shaded bars to the left of
the top frame denote the time sequence and durations of all the SSM/I missions.
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FIG. 10. Monthly zonal averaged SST time series anomalies based on (top) the HOAPS Pathfinder sampling
and (bottom) NCEP–NCAR reanalysis. The data are temporally smoothed by performing a running 6-month
average (K).
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approach uses retrieved Qa and wind speed estimates
based on SSM/I data. For Qs, its value was derived from
SST estimates that were provided from reanalysis. It is
therefore not surprising that a gradual trend with a dis-
tinct sign shift in 1992 are seen in both Qa and wind
speed, and that Qs does not show the same degree of
qualitative similarity. Both S.-H. Chou (2002, personal
communication) and Curry et al. (2004) emphasize the
importance of the SST data quality, and the discrepan-
cies found in this analysis between HOAPS and GSSTF
in the wake of the Pinatubo eruption underscore this
point. However, the presented analysis would indicate
that the ocean evaporation trend, based on a bulk aero-
dynamic formula, is largely a manifestation of SSM/I-
based wind and humidity products used in (1). As such,
these products must be carefully reinspected to find the
extent and cause of the apparent intersensor disjoints in
the data, particularly for the F8–F11 transition and
F10–F13 overlap period.

4. Summary and conclusions

In summary, an analysis of global satellite-based pre-
cipitation and evaporation estimates indicates that on
an annual-averaged basis, the imbalance of global pre-
cipitation and evaporation estimates is about 5%, and
exceeds the estimated uncertainty of global mean an-
nual precipitation (��1%). However, for any given
year, the annual mean flux imbalance can be as high as
10% (i.e., on the order of 1016 kg yr�1), but the total
precipitable water interannual variations suggest that
the agreement should be as low as 0.01% (i.e., �1013 kg
yr�1). The correlation between observed interannual
global precipitation and evaporation variations are
quite low (between 0.59 and 0.34, untrended), in con-
trast to an AGCM simulation (0.95). The observed
global total precipitable water (TPW) changes cannot
account for the trend or variation differences between
any of the global precipitation and evaporation esti-
mates. Moreover, global TPW is typically on the order
of 1016 kg, and therefore the annual global E � P values
(also on the order of 1016 kg yr�1) indicated are highly
unlikely. The analysis also suggests that substantial,
but excessive, trends of �0.5%–1% yr�1 exist in the
global ocean evaporation estimates considered. Quali-
tatively, this trend direction is consistent with the
AGCM simulation, but the AGCM trend is an order of
magnitude smaller. The largest increases in annual
ocean evaporation are in close correspondence with
transitions between SSM/I instruments, from which re-
trieved near-surface atmospheric humidity and wind
speed are used for the bulk estimate. In spite of the
potential deficiencies noted above, an average global

water cycling “rate” equal to the global, annual-
averaged precipitation or evaporation derived from this
analysis is equal to 4.80 � 1017 kg yr�1 with at least an
uncertainty of �0.05 � 1017 kg yr�1 (the averaged
GPCP and CMAP global error) and a standard devia-
tion of 7.1 � 1015 kg yr�1.

As previously noted, a consistency assessment of our
global freshwater discharge, (i.e., P � E over land)
combined with our ocean E � P estimates against ob-
served ocean salinity is absent. Ocean evaporation en-
hances dissolved salts that increase salinity and like-
wise, precipitation dilutes the saltiness of the upper-
ocean layers. Salinity tends to be high in midlatitudes
where evaporation is high and lower near the equator
where precipitation is high. Very high latitudes can also
see decreases in salinity where sea ice is melting, and
decreases in salinity is expected near river outlets.
Curry et al. (2003) presents a comparison of salinities
on a long transect (50°S–60°N) through the western
basins of the Atlantic Ocean between the 1950s and the
1990s, finding a systematic freshening at both poleward
ends contrasted with large increases of salinity pervad-
ing the upper water column at low latitudes. These
large increases of salinity at low latitudes correspond to
an increase of 5%–10% in evaporation over the 40-yr
period. Scientific progress in using salinity to diagnose
global evaporation, precipitation, and runoff changes is
limited because conventional in situ salinity sampling is
too sparse to give the global view of salinity variability.
While substantial improvements and updates in the
global salinity archive has become available (e.g.,
Conkright et al. 2002), its temporal and spatial coverage
allow for only long-term analysis (i.e., over multiple
decades) of multiyear averages (e.g., Boyer et al. 2005).
Present-day salinity observations are very sparse, with
25% of 1° latitude–longitude squares devoid of mea-
surements and �73% with fewer than 10 observations
(Koblinsky et al. 2003). Two satellite missions are now
being developed to provide the first synoptic global sa-
linity observations on a weekly to monthly time scale,
and spatial resolutions on the order of 100 km. Analysis
of these forthcoming salinity observations should pro-
vide great insight on changes in the trends and varia-
tions of the global water cycle. As with the spatial and
temporal sampling of satellite-retrieved surface salinity,
complemented by the continuing measurements from
ship and buoy data, a more cohesive collection of ocean
salinity data will be available and allow for a more con-
sistent and seamless application to the type of analyses
conducted in this study.

Several implications for observational global water
cycle capability, accuracy, and consistency result from
this study. Based on the analyses’ estimated global
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GPCP and CMAP annual precipitation variabilities
(i.e., the global values in Table 2), a monotonic global
precipitation increase of at least 0.3% yr�1, over the
length of this data synthesis (12 yr) would be required
for “low-risk” linear-trend detection. This low-risk
minimum trend value was obtained by using Eqs. (1)–
(3) in Ziegler et al. (2003) with � and � values deemed
low risk and solving for |�min|. The solution for |�min| is
fairly insensitive to the choice of using GPCP or CMAP
(resulting minimum trend values are within 0.03% yr�1

of each other). However, this minimum trend estimate
does not explicitly account for measurement error, and
thus the degree of uncertainty in the global annual
GPCP and CMAP estimates (i.e., ranges given in Table
1 and the error bars in Fig. 6) would imply a stronger
trend needed for minimal detection. Nevertheless, re-
cent multimodel analysis of global change simulations
from CMIP2 (Räisänen 2002) show a range of global
precipitation changes of �0.2%–5% as a result of tran-
sient (1% yr�1 increase during an 80-yr simulation)
doubled-CO2 concentrations. In terms of annual rate
precipitation trends, this CMIP2 range translates to ap-
proximately �0.003%–0.07% yr�1 (given that a dou-
bling of CO2 would be achieved by year 70 in the
CMIP2 simulations). Thus, the results of this study in-
dicate that on an annual basis, the current satellite-
based retrieval synthesis and parametric global water
cycling estimates can neither provide trend detection
nor balanced and/or consistent analyses to verify the
range of climate model global hydrologic change pro-
jections. Not only must global water cycle observation
synthesis continue, so as to reduce the minimum trend
that can be detected (e.g., Ziegler et al. 2003), but de-
tection strength may be augmented through trend con-
sistency between global evaporation, precipitation, and
precipitable water observations. In this respect, the two
order of magnitude discrepancy between annual varia-
tions of global P � E and precipitable water must also
be reduced. This would include a careful reevaluation
of the global ocean evaporation trends. In doing so, the
retrieved SSM/I quantities and their trends (on a global
and regional scale) as well as their usage in a bulk aero-
dynamic formula, and whether other inputs to the for-
mula are robust, such as the bulk aerodynamic coeffi-
cient (or Dalton number), CE, must be reexamined.
Unfortunately, during the course of this study, an ex-
plicit examination of the calculated CE from the GSSTF
algorithm was not possible. Preliminary analysis of the
HOAPS-derived CE shows a very heterogeneous rela-
tionship in this regard (i.e., no globally ubiquitous con-
sistency), and likely does not substantially affect the
HOAPS trend. The types of diagnoses and reevalua-
tions required to adequately address and improve the

performance of satellite-based ocean turbulent flux es-
timates (like the GSSTF product) are a key element in
the SEAFLUX project (Curry et al. 2004), and there is
great promise for improving these global estimates and
quantifying uncertainties. Finally, the uncertainty (i.e.,
consensus) in the estimated global, annual river dis-
charge should be reduced to well below its measured
interannual variability, which is on the order of 1–2 �
1015 kg yr�1. Until such time, it will be problematic to
ascribe unequivocal detection of “significant” global
change in observed annual global river discharge.

There is a clear need of a global “vital sign” (e.g.,
Karl and Trenberth 2003) of the hydrologic system for
public awareness and guidance for global policy deci-
sions. However, this study shows that our ability to con-
sistently observe global-scale water cycle components
requires a considerable amount of maturing. Such glob-
al hydrologic metrics will be valuable to the general
public, much like global averaged temperature, in con-
veying the “status” of global changes in water trans-
port, but credence in such metrics ultimately lay in the
quality and consistency of the measurements we use.
The ultimate goal of quantifying the degree, causes, and
consequences of global hydrologic change will likely be
achieved through global hydroclimatological data col-
lection and analysis of event-based precipitation (e.g.,
Trenberth et al. 2003) and associated hydrologic quan-
tities (e.g., water storage, evaporation, and runoff). In
doing so, we will also continue to build upon our re-
gional observational capabilities to detect regional cli-
mate change “hot spots” (e.g., Giorgi 2006). Thus, the
development of climate-quality-observed global hydro-
logic data must be sustained and considered a top pri-
ority. Such data will ensure the effective analyses, com-
munication, and application of global climate changes
(anthropogenic and/or natural) that we observe.
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