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Land, Water and Energy Data
Assimilation

David L. Toll and Paul R. Houser

12.1 Introduction

12.1.1 Land-Water-Energy Systems

The land surface stores (temperature, soil moisture, snow, etc.) and modulates global energy
and water fluxes that pass between the surface and the atmosphere. Hydrological cycle
fluxes move energy as water. Energy used to evaporate water may be released hundreds of
kilometres away during condensation, producing clouds and precipitation. Rainfall-runoff
processes, weather and climate dynamics, and ecosystem changes all are highly dependent
on land surface water and energy budgets.

As people alter the land surface, concern grows about the ensuing consequences for
weather and climate, water supplies, crop production, biogeochemical cycles and ecolog-
ical balances at various time scales. Therefore, it is crucial that any natural or human-
induced water cycle changes in the land and atmosphere be assessed, monitored and pre-
dicted. For example, Gornitz et al. (1997) report that nearly 1% of the total, global annual
stream flow is reduced by human activities such as irrigated agriculture contributing to a sea
level lowering of 0.8 & 0.4 mm per year. This offsets the predicted 1-2 mm/year sea level
rise attributed to global warming. Accurately assessing land surface hydrology and energy
flux spatial and temporal variation is essential for understanding and predicting biospheric
and climatic responses. Data assimilation is a key means of improving our knowledge of
these processes by optimally constraining model predictions with observational informa-
tion.

Spatial Modelling of the Terrestrial Environment. Edited by R. Kelly, N. Drake, S. Barr.
© 2004 John Wiley & Sons, Ltd. ISBN: 0-470-84348.9.



246 Spatial Modeliing of the Terrestrial Environment

Timestep Timestep Timestep
1 2 g _ 3

LDAS -—»r LOA ¢ }m———p | LDAS

(i)

Figure 12.1 Interaction of the Land Data Assimilation Scheme (LDAS) with an operational
Numerical Weather Prediction (NWE) system. The atmospheric General Circulation Model
(GCM) is coupled with the Land Surface Model (LSM), and both use a 4-Dimensional Data As-
similation (4DDA) process to integrate past forecasts with observations to improve performance

12.1.2 Land Data Assimilation

Data assimifation is a numerical scientific too) that can improve land, water and energy
budget model estimations through the incorporation of abservational constraints, This leads
niot only to betier overall predictions, but also helps ta diagnose model weaknesses and
can suggest where better parameterizations are needed. The fusion of operational modet
and observation data via data assimilation requires access to large near-real ime surface
atmospheric and hydrologic information vofumes. Data processing, modelling and data
assimilation require large computational and data storage resources that are becoming
more achievable with evolving computer technology.

Additionally, new remotely sensed land surface observations are becoming available that
will provide the additional information necessary to constrain land surface predictions at
multiple time and space scales. These constraints can be imposed two ways (Figure (2.1).
First, by forcing the land surface primarily by observations (e.g. precipitation and radiation),
the often-severe atmospheric numerical weather prediction biases can be avoided. Second,
by employing innovative land surface data assimilation techniques, land surface storage
observations such as soil temperature and moisture can be used 10 constrain unrealistic
stmulated storages. Land data assimilation techniques also have the ability to maximize
the utility of limited land surface observations by propagating their information throughout
the land system to times and focations which lack observatiopal data. The primary thrust
of this chapter is to highlight land, energy and water data assimilation. Specifically we will
do so through the ‘Land Data Assimilation Systems’ (LDAS) framework.

12.2 Land Data Assimilation Systems (LDAS)

Significant land-surface observation and modelling progress has been made at a wide
range of spatial and temporal scales. Projects such as the International Satellite Land
Surface Climatology Project (ISLSCP) (Hall et af.. 2002), the Global Soil Wetness Project
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(GSWP) (Koster and Milly, 1997), and the Global Energy and Water Experiment (GEWEX)
Continental-Scale International Project (GCIP), among others have paved the way for op-
erational Land Data Assimilation System (LDAS) development. The LDAS development
serves as an integrating linkage between a variety of Earth science disciplines and geo-
graphical locations. The LDAS are forced with real time output from numerical prediction
models, satellite data, and radar precipitation measurements. Many model parameters are
derived from high-resolution satellite-based vegetation coverage. But most importantly,
LDAS integrates state-of-the-art modelling and observation on an operational basis to pro-
vide timely and consistent high quality land states to be used in real-time applications
such as coupled land-atmosphere models and mesoscale climate models. A primary LDAS
goal is to provide a broad range of information useful for applications, policy making and
scientific research. We are currently associated with three LDAS projects: (1) the North
American LDAS; (2) the Global LDAS; and (3) the Land Information System (LIS). The
Global and North American LDAS provide real-time and selected retrospective simula-
tions and the LIS team is currently developing the high-performance computation capabii-
ity to perform a relatively high spatial resolution (1 km) global land prediction.

12.2.1 The North American LDAS

The North American LDAS (NLDAS) was initiated in 1998 primarily to derive land surface
modelling with observation and model-based forcing fields (e.g. radiation and precipita-
tion) to avoid biases from atmospheric models (Mitchell et al., 1999). NLDAS consists
of a number of land surface models that use remote sensing and in situ observations grid-
ded to 1/8 degree. NASA, NOAA National Center for Environmental Prediction (NCEP),
Princeton University, Rutgers University, the University of Maryland and the University
of Washington implement NLDAS in near real time using existing Land Surface Models
(LSM’s). NLDAS has also been run for a 50-year retrospective period from 1950-2000
(Maurer er al., 2002). NLDAS uses NCEP ‘Eta’ model analysis fields, along with ob-
served precipitation and radiation fields to force several different land surface models in an
uncoupled modelling system.

12.2.2 The Global LDAS

The Global Land Data Assimilation System (GLDAS) enlarges upon NLDAS to the global
scale using many of the same algorithms, but necessarily requiring global forcing and
parameter fields (Rodell et al., 2002). Whereas a primary NLDAS emphasis is to improve
local weather forecasts, a primary GLDAS emphasis is to provide initialization of global
coupled weather and climate prediction models. In addition to improved weather prediction
and climate modelling, both systems have a broad range of applications in studies of the
terrestrial energy and water cycles. Examples include flood and drought assessment, water
usage for crops, snowpack and snowmelt for water availability, water and energy data for
ecosystem modelling and net primary productivity.

Both NLDAS and GLDAS are able to drive multiple land surface models under one
system. A summary of the key system features is given in Table 12.1. Furthermore, input
and output fields for NLDAS and GLDAS are summarized in Table 12.2. Outputs from
the LDAS simulations are freely available (see http://ldas.gsfc.nasa.gov) and the LDAS
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Table 12.1 Typical programme execution options in LDAS (from Rodell et al.,

2002)

Attribute/Option Description

Spatial resolution 0.125° (NLDAS); 0.25° to 2.5° (GLDAS)

Land surface model ~ MOSAIC; CLM; NOAH; catchment {in preparation)
Forcing Various model and satellite-derived products
Initialization None (constant value); restart file; forcing data

Subgrid variability 1-13 tiles per grid cell
Elevation adjustment  Temperature; pressure; humidity; long-wave radiation

Data assimilation Surface temperature; snow cover; soil moisture
Soil classification Look-up table; Reynolds ez al. (1999)

Leaf area index Look-up table; AVHRR/model derived

Infand water tiles CLM lakes option

Reproduced by permission of the American Meteorological Society

website includes a real-time image generator and data subsetting tool that permits viewing
and acquisition of recent LDAS results.

12.2.3 Land Information System

Increases in GLDAS resolution to 1 km are planned and will improve land-atmosphere
process understanding. However, to process a year of | km global data using conventional
computers would require an unavailable amount of computer runtime. A new Land Infor-
mation System (LIS), building on the same land surface modelling and observation fields as
GLDAS, is being constructed (http://lis.gsfc.nasa.gov). The LIS uses a high performance,
massively parallel computer including a 192-node Beuwolf computer cluster to support
throughput demands of a near real-time global 1 km land prediction and data assimilation
system. The system will have a web-based user interface designed to facilitate broad and
efficient usage. Input and output are based on developing an Earth System Modelling
Framework (ESMF, hitp://www.esmf.ucar.edu) that demonstrates the interoperability of
disparate model components and enables the use of remotely sensed data in coupled Earth
system models.

12.3 LDAS Components

Land data assimilation typically refers to the incorporation of observational (in siru and
remote sensing) data into an LSM. Land surface modelling provides the spatial and temporal
predictions, whereas observations are typically used as input data or ‘correction’ data for the
numerical simulation. The three central land surface data assimilation system components
are the following: (1) land surface simulation; (2) land surface observations; and (3) land
surface data assimilation.

12.3.1 Land Surface Simulation

Recent advances in understanding soil-water dynamics, plant physiology, micrometeorol-
ogy, and biosphere-atmosphere interactions have spurred LSM developments that seek to
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realistically represent mass, energy, and momentum transfer between a vegetated surface
and the atmosphere (Dickinson et al., 1993; Sellers et al., 1986). LSM predictions are
regular in time and space, but are influenced by model structure, input forcing and model
parameter errors, and inadequate sub-grid-scale spatial variability treatment. Consequently,
LSM hydrology and energy prediction will likely be much improved by using assimilation
strategies to remove biases and better constrain boundary conditions.

There are many different approaches to land surface prediction, which has led to great
diversity in LSMs. Four L.SMs either used or soon to be used in LDAS are presented
here. These are the: (1) Mosaic LSM of Koster and Suarez (1992); (2) the Catchment
LSM of Koster et al. (1998); (3) the National Centers for Environmental Prediction
(NCEP), Oregon State University (OSU), United States Air Force (USAF) and Office
of Hydrology (OH), LSM, called the NOAH LSM (Mitchell, 2002); and (4) the re-
cently emerging Community Land Model (CLM) (Bonan, 1998 and Dickinson ez al.,
2000).

The Mosaic I.SM addresses the sub-grid heterogeneity issue by subdividing each GCM
grid cell into a user-specified mosaic of tiles (after Avissar and Pielke, 1989), with each
tile having different vegetation characteristics and hence water and energy batance. Surface
flux calculations for each tile are similar to those described by Sellers et al. (1986). Like
the plethora of LSMs that have been developed over the past decade, tiles do not directly
interact with each other, but influence each other indirectly by their collective influence on
the coupled overlying atmosphere (Henderson-Sellers et al., 1993). Vukovich ez al. (1997)
report using tiles reduced the average error for three test sites by 11% for sensible heat
and 20% for latent heat fluxes. Toll et al. (2001) report much of the error is in geographic
regions with contrasting cover such as forests, grasses, and crops when using only one
land cover class per grid cell. Although the Mosaic LSM is well suited to modelling
the vertical exchange of mass, energy and momentum between the land surface and the
overlying atmosphere, Mosaic includes no lateral moisture movement representation, which
can significantly impact soil water, surface energy fluxes and runoff variation at some
scales.

Recognizing this weakness, Koster er al. (1998) developed a new, catchment-based LSM
that includes a more realistic hydrological process representation, including soil water
lateral transport through the subsurface. The catchment-based land surface model uses
a topographic land atmosphere transfer scheme (TOPLATS) that relies heavily on the
concepts originally put forth by Famiglietti and Wood (1994) and Peters-Lidard et al. (1997)
(i.e., the TOPLATS model). It represents a major advance in LSMs for the following two
reasons. First, TOPMODEL’s topographically based framework (Beven and Kirkby, 1979)
will result in improved runoff prediction, and consequently, a more realistic catchment-scale
water balance. Second, the downslope moisture movement within the watershed will yield
sub-catchment-scale surface and unsaturated-zone moisture variations, which will result in
more realistic prediction of intra-catchment surface flux variations. Ultimately, improved
runoff simulation will result in more realistic continental-scale stream flow estimates from
the Jand to the oceans, and similarly, the intra-catchment surface flux variation will improve
catchment-average exchanges with the atmosphere.

The NOAH LSM simulates soil moisture (both liquid and frozen), soil temperature, skin
temperature, snowpack water equivalent, snowpack density, canopy water content, and
the traditional energy flux and water flux terms of the surface energy and surface water
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balance (Mitchell, 2002). NOAHLSM uses global satellite-derived monthly climatological
vegetation greenness fraction, albedo values for different surfaces, and accounts for the snow
albedo. Recently, the NOAH has significantly improved both cold season process physics
and bare soil evaporation. This model has been used in: (1) the NCEP-OH submission to the
‘PILPS-2d’ tests for the Valdai, Russia site; (2) the emerging, real-time, North American
Land Data Assimilation System (NLDAS); (3) the coupled NCEP mesoscale model and
the Eta model’s companion 4-D Data Assimilation System (EDAS); and (4) the coupled
NCEP global Medium-Range Forecast model (MRF) and its companion 4-D Global Data
Assimilation System (GDAS). !

The Community Land Model (CLM) is under development by a grass-roots collaboration
of scientists who have an interest in making a general land model available for public
use. The CLM development philosophy is to use only proven and well-tested physical
parameterizations and numerical schemes. The current CLM version includes superior
components from each of several contributing models (Bonan, 1998 and Dickinson et al.,
1993). The CLM code is managed in an open source style, in that updates from multiple
groups will be included in future model versions. Also, the land model was run for a test
case suite including many of the Projects for the Intercomparison of Land Parameterization
Schemes (PILPS) case studies (Koster and Milly, 1997).

There are strong justifications for using an uncoupled LSM modelling system for LDAS.
Although coupling the LSM to an atmospheric model permits the study of the interaction
and feedbacks between the atmosphere and land surface, coupled modelling also imposes
strong Numerical Weather Prediction land surface forcing biases on the LSM (Mitchell
et al., 1999). These precipitation and radiation biases can overwhelm the behaviour of
LSM physics. In fact, several numerical weather prediction centres must ‘correctively
nudge’ their LSM soil moisture estimates towards climatological values to eliminate soil
moisture ‘drift’ (Mitchell ez al., 1999). By using an uncoupled LSM, LDAS users can better
constrain land surface forcing via observations, use fewer computational resources, and still
address all of the relevant LDAS goals. The physical understanding and modelling insights
gained from implementing distributed, uncoupled land-surface schemes with observation-
based forcing have been demonstrated in recent off-line land surface modelling projects
such as the GEWEX Global Soil Wetness Project (Koster and Milly, 1997).

12.3.2 Observations and Observation-Based Data

Atmospheric model simulations and observation-based data are used as a baseline to pro-
vide forcing fields as input for LDAS and LIS (Table 12.2). Forcing fields for both NLDAS
and GLDAS may be obtained through the LDAS website (http://ldas.gsfc.nasa.gov) and
from NCEP (ftp://ftp.ncep.noaa.gov/pub/gep/ldas/noaaoutput). The LDAS is forced with
real-time output from numerical prediction models, satellite data and surface radar precipi-
tation measurements. Many LDAS vegetation parameters are derived from high-resolution
AVHRR and MODIS observations. See Mitchell et al. (1999) for a further description of
NLDAS forcing and see Rodell ef al. (2002) for GLDAS forcing.

Atmospheric Forcing Data. GLDAS provides a choice between three meteorological
model inputs. First, the NASA/Goddard Earth Observing System (GEOS) data assimi-
lation system supports Level-4 data products from the NASA TERRA satellite. The data



Land, Water and Energy Data Assimilation

251

Table 12.2 LDAS Model output summary using the mosaic LSM

Atmospheric

Land Surface and Subsurface

Net shortwave radiation
(W m?)

Net longwave radiation
(Wm™?)

Downward solar radiation
flux (W m~2)

Downward longwave
radiation flux (W m~%)

Snowfall, frozen (Kg m—2)
precipitation (Kg m™?)

Rainfall, unfrozen (Kg m=?)

Surface pressure (Pa)

Air temperature, 2 m (K)

Specific humidity, 2 m
(Kg/Kg)

U wind component (m s~2)

V wind component (m s™%)

Convective precipitation
(Kg m~?)

Surface runoff (Kg mv)
Subsurface runoff (Kg mv)

Average surface temperatuse
K
Surface Albedo paul (%)

Total soil column wetness (%)

Snow depth (m)
Snow cover (%)

Plant canopy surface water
storage (kg mv)
Deep soil temperature (K)

Total column soil moisture
(Kg m™%)

Root zone soil moisture
{Kg m=2)

Vegetation greenness (%)

Leaf area index

Top 1 m soil moisture (Kg m™~2)

Snowmelt (Kg m™?)

Layer 2 soil moisture (Kg m™)

Layer 3 soil moisture (Kg m~?)

Snowpack water equivalent
(Kg m™2)

Root zone wetness (%)

Canopy surface water
evaporation (W m~?)

Canopy transpiration (W m~?)

Aerodynamic conductance
(ms™)

Canopy conductance (m s™')

Sensible heat flux (W m™)

Latent heat flux (W m™2)

Ground heat flux (W m~2)

(dimensionless)

are produced on a 1-degree global grid in 3-hour assimilation datasets. GEOS incorporates
Physical-Space Statistical Analysis System (PSAS) data assimilation techniques that com-
bine current boundary conditions (e.g. sea surface temperature) with updated observations
and error statistics. Second, the Global Data Assimilation System (GDAS) operational
weather forecast model of National Centers for Environmental Prediction (NCEP) is avail-
able (Derber et al., 1991). GDAS data at a native resolution of 0.7° is mapped to a 1-degree
global grid in the GLDAS project. Third, the European Centre for Medium-Range Weather
Forecasts (ECMWF) products are also available. ECMWF produces 6-hour forecasts at
approximately 39-km spatial resolution. The analysis includes in situ conventional and
satellite-derived data using a four dimensional multivariate data assimilation technique.
Rodell er al. (2002) report the GEOS data prqvides the best comparison to observation data
and was chosen as the primary forcing data for GLDAS.

When possible, observation-based data from satellites, precipitation gauges and Doppler
radar is used. For example, in GLDAS and NLDAS observational data may be used to
replace or update modelled data that is spatially and temporally contiguous. Observational
data are typically used when validation and quality control efforts indicate satisfactory ac-
curacy. With increases in computer power, observational data are now used more frequently
in data assimilation (Cohn et al., 1998; Mitchell, 2002).
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Land Surface State Data.  Operational and accurate global land surface hydrologic predic-
tions require the assimilation of spatially distributed remote sensing-derived observations.
Observations of interest include temperature, soil moisture (surface moisture content, sur-
face saturation, total water storage), lake/river height and flow, snow areal extent and snow
water equivalent, land cover, leaf area index and albedo.

Surface temperature remote sensing is a relatively mature technology. The land surface
emits thermal infrared radiation at an intensity directly related to its emissivity and temper-
ature. The absorption of this radiation by atmospheric constituents is smallest in the 35
and 8-14 um wavelength ranges, making them the best windows for sensing land surface
temperature. Some errors due to atmospheric absorption and improperly specified surface
emissivity are possible, and the presence of clouds can obscure the signal. Generally, sur-
face temperature remote sensing can be considered an operational technology (Ma et al.,
2002), with many spaceborne sensors making regular observations (i.e., Landsat Thematic
Mapper, NOAA Advanced Very High Resolution Radiometer (AVHRR), Terra and Aqua
Moderate Resolution Imaging Spectroradiometer (MODIS) and Terra Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER)). The land surface tem-
perature evolution is linked to all other land surface processes through physically based
relationships, which makes its assimilation possible.

Soil moisture remote sensing is a developing technology, although the theory and meth-
ods are well established (Eley, 1992). Long-wave passive microwave remote sensing is
ideal for soil moisture observation, but there are technical challenges in correcting for the
vegetation and roughness effects. Soil moisture remote sensing has previously been limited
to aircraft campaigns (e.g. Jackson, 1997a), or Defense Meteorological Satellite Program
(DMSP) Special Sensor Microwave Imager (SSM/I) analysis (Jackson, 1997b) data. SSM/I
data was also successfully employed to monitor surface saturation/inundation (Basist and
Grody, 1997). The Advanced Microwave canning Radiometer (AMSR) instrument provides
additional C-band microwave observations that may be useful for soil moisture determi-
nation. The Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI),
which is very similar to AMSR radiometrically, is much better suited to soil moisture mea-
surement (because of its 10 Mhz channels) than SSM/1, and is also currently available. All
of these sensors have adequate spatial resolution for land surface applications, but have
a very limited quantitative measurement capacity, especially over dense vegetation. How-
ever, Sipple et al., (1994) demonstrated that it is possible to detect saturated areas through
dense vegetation using Scanning Multichannel Microwave Radiometer (SMMR), which
can greatly aid land surface predictions. The SMMR has similar radiometric characteristics
to AMSR. Because of the large remotely sensed microwave soil moisture observation error,
there is a real need to maximize its information content by using algorithms, such as data
assimilation, that can account for measurement error and extend satellite information in
time and space.

There is a potential to monitor total water storage variations (ground water, soil water),
surface waters (lakes, wetlands, rivers), water stored in vegetation, and snow and ice using
time variable gravity field satellite observations. The Gravity Recovery and Climate Exper-
iment (GRACE), an Earth System Science Pathfinder mission, will provide highly accurate
terrestrial water storage change estimates in large watersheds. Wahr et al. (1998) note that
GRACE will provide water storage variation estimates to within 5 mm on a monthly ba-
sis. Rodell and Famiglietti (1999) have demonstrated the potential utility of these data for
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hydrologic application is aimed more at large watersheds (>150,000 km?). They further
discuss the potential power of GRACE to constrain land surface modelled water storage
when combined with surface soil moisture and altimetery observations. Birkett (1998)
demonstrated the potential of satellite radar altimeters to monitor height variations over
inland waters, including climatically sensitive lakes and large rivers and wetlands. Such
altimeters are currently operational on the ERS-2, TOPEX/POSEIDON, ENVISAT and
JASON-1 satellites.

Key snow variables of interest to land data assimilation include areal coverage and
snow water equivalent. While snow water equivalent estimation by satellite is currently in
research mode, snow areal extent can be routinely monitored by many operational plat-
forms (Tait ez al., 2000), including AVHRR, GOES, MODIS and SSM/I. Recent algo-
rithm developments even permit snow cover fraction determination within Landsat-TM
pixels (Rosenthal and Dozier, 1996). Cline et al. (1998) describe an approach for re-
trieving snow water equivalent from the jointly using remote sensing and energy balance
modelling.

Other key variables conducive to remote sensing are surface albedo (Toll et al., 1997),
land cover and leaf area index (Justice et al., 1998). They are each key variables to global
climate, ecology, hydrology and biogeochemical models that may help describe the energy,
mass (e.g. water and CO;) and momentum exchanges between the land and atmosphere.
In addition, they are available as data products globally from satellite sensors such as the
Terra and Aqua MODIS (Justice et al., 1998).

12.3.3 Data Assimilation

The presence of model and observation error causes the study of highly interactive large-
scale land hydrology and energy budgets to be a complex task. A combination of infor-
mation, including LSM data, remote sensing observations and in situ surface data is used
for study. There have been recent data assimilation theory advances that have provided
quantitative methods for merging the various information types to provide more accurate
estimates (Errico, 1999). Lorenc (1995) defines assimilation as the process of finding the
model representation that is most consistent with the observations. In essence, data assim-
ilation merges a range of diverse data fields with a model prediction to provide that model
with the best estimate of the current state of the natural environment so that it can then
make more accurate predictions. Most data assimilation techniques can be applied to al-
most any dynamic geoscience problem, but are often limited by computational feasibility.
Earth scientists now face the challenge to apply true data assimilation techniques to all
problems where the incorporation of observations can provide new insights. However, this
is a difficult task due to the highly nonlinear nature of land surface processes, the problem
size, and the lack of data and experience to determine error statistics accurately. Conse-
quently, data assimilation implementation always requires trade-offs between resolution,
complexity, computational effort, and data availability.

Data assimilation techniques are used extensively in meteorology (Daley, 1991) and
oceanography (Wunsch, 1996). For example, in meteorology data assimilation is routinely
used to improve weather forecasting. Currently most operational weather forecast centres
use optimal interpolation type schemes (Daley, 1991). NASA’s Data Assimilation Office
has recently improved this technique by developing the Physical-Space Statistical Analysis
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System (PSAS) (Cohn et al., 1998). PSAS operates in the spatial domain and improves the
complicated and time-dependent error covariance estimation.

Hydrologic data assimilation, especially at large scales, is in its early stages (Reichle,
2000; McLaughlin, 1995). One formidable problem is that many hydrological processes
are non-linear. Currently, there are only a few studies that use distributed watershed models
to assimilate field data. Reichle (2000) provides a short Earth sciences data assimilation
review with a focus on hydrology. Surface hydrology data assimilation is based primarily
on soil moisture information from surface observations or remote sensing. There are several
soil moisture estimation data assimilation techniques that use a one-dimensional optimal
estimation approach, including studies by Milly (1986), Katul et al. (1993), Parlange et al.,
(1993), Entekhabi et al. (1994), Galantowicz et al. (1999), Calvet ez al. (1998) and Castelli
et al. (1999). Several additional studies have used low-level atmospheric observations
to infer soil moisture using one-dimensional optimal variation assimilation approaches
(Mahfouf, 1991; Bouttier ef al., 1993; Hu et al., 1999; Callies et al., 1998: Rhodin, et ai.,
1999). In these approaches the calculation of soil moisture is a ‘parametric approach’
and not physically based. Reichle et al. (2002) used four-dimensional variational data
assimilation with improved physics. They used large-scale soil moisture profiles along
with other soil and vegetation parameters from passive microwave measurements in their
data assimilation.

Unlike previous efforts to test assimilation of soil moisture using synthetic data, two
recent studies assimilated soil moisture into a LSM with actual remote sensing data. Both
Crow and Wood (2003) and Margulis er al. (2002) demonstrated the utility of an extended
Kalman filter that assimilated airborne microwave brightness data into a LSM. Both studies
used ESTAR (Electronically Scanned Thinned Array Radiometer) brightness tempera-
ture data (1.4 GHz frequency, L-band), from the 1997 Southern Great Plains Experiment
(SGP97), sensitive to soil moisture variations to 5 cm. The data assimilation was reported
to be a computationally efficient and more accurate approach than modelling or remote
sensing alone. The extended Kalman filter data assimilation was able to derive spatial and
temporal trends of soil moisture in the root zone, significantly below the sensitivity of
L-band data (to 5 cm). A summary of recent data assimilation soil moisture papers related
to LDAS is given next.

Houser er al. (1998) demonstrated the feasibility of synthesizing distributed soil mois-
ture fields by the novel application of four-dimensional data assimilation in a hydrolog-
ical model. Six Push Broom Microwave Radiometer (PBMR) images gathered over the
USDA-ARS Walnut Gulch Experimental Watershed in southeast Arizona were assimi-
lated into the TOPLATS hydrological model (Peters-Lidard et al., 1997) using several
alternative assimilation procedures. Modification of traditional assimilation methods was
required to use the high-density PBMR observations. Information on surface soil moisture
was assimilated into the subsurface using surface-subsurface correlation knowledge. New-
tonian nudging assimilation procedures were found to be preferable to other techniques
because generally they preserve the observed patterns within the sampled region, but also
yield plausible patterns in unmeasured regions, and allow information to be advected in
time.

Reichle et al. (2002) used the ensemble Kalman filter to estimate soil moisture by as-
similating microwave L-band (1.4 GHz) brightness temperatures into a land surface model.
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They concluded the ensemble Kalman filter specifically reduced soil moisture estimation
errors in comparison to results without data assimilation. They also concluded that assimi-
lation schemes that use ‘static’ forecast error covariances such as in statistical interpolation
produce less accurate estimates than the ensemble Kalman filter. In addition, they found
that the ensemble Kalman approach is very flexible and is applicable over a broad model
error range.

Sun ez al. (2002) used an extended Kalman filter to assimilate observed snow water equiv-
alent, available through using satellite remote sensing for snow depth, snow temperature
and snow water equivalent retrieval. They used a NASA Seasonal-to-Interannual Prediction
Project (NSIPP) land surface model and derived ‘tru¢’ snow states with European Centre
for Medium-Range Weather Forecasting (ECMWF) atmospheric forcing data. The data
were degraded and then assimilated for comparisons to the ‘true’ snow states. Because of
snow’s high albedo, thermal properties, feedback to the atmosphere and as medium-term
water storage, improved snow state estimation has the potential to greatly increase the
climatological and hydrelogical prediction accuracy.

Walker and Houser (2001) found the one-dimensional extended Kalman filter effective
in assimilating near-surface soil moisture into a land surface model. They degraded a
simulation by setting the initial soil moisture prognostic variables to arbitrarily wet values
throughout North America. A ‘true’ land surface simulation was run using International
Satellite Land Surface Climatology Project (ISLSCP) forcing data. The study showed
assimilation of near-surface soil moisture observations from a remote sensing satellite
reduced soil moisture storage error to 3% after a one-month assimilation and to 1% after a
12 month assimilation. They concluded that data assimilation of remotely sensed data may
provide accurate initial conditions to GCMs and that these models need not rely on initial
conditions from a spun-up LSM simulation.

12.4 LDAS Applications

Real-time North American LDAS and Global LDAS (see hitp://ldas.gsfc.nasa.gov) that
use atmospheric forcing fields to initialize land surface models are currently in place. Fig-
ure 12.2 illustrates for July 1996 a continental U.S. 1/8° precipitation image (upper) from
assimilated modelling and observational data that were input to LDAS to derive the aver-
age surface soil moisture (lower). The precipitation data were assimilated using a NCEP
Eta model, NEXRAD Doppler radar and Higgins gauge precipitation data (Mitcheli ez al.,
1999) combination. The precipitation data along with radiation data are key input param-
eters (see Table 12.2) to LDAS. Inspection of Figure 12.2 helps illustrate the relationship
between precipitation and soil moisture that is influenced by pther LDAS output parameters
(Table 12.2) such as soil properties, LAI and radiation supply.

Figure 12.3 shows precipitation data over North America available for use as forcing
data for LDAS. Comparisons between the precipitation plots show the large variation in
estimates. The DAO GEOS and NOAA NCEP-EDAS data are the primary baseline forcing
fields and provide spatially and temporally contiguous data. In addition, there are other
observational-based datasets that may offer an improved precipitation dataset. The U.S.
Naval Research Laboratory (NRL) provided near-real time satellite precipitation data from
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Figure 12.2 A continental United States 1/8° LDAS merged Eta model, NEXRAD Doppler
radar and gauge precipitation field (a) and soil moisture field (b) (courtesy B. Cosgrove)

both infrared data and microwave sensors (Turk er al., 2000). The microwave data are
from TRMM and SSM/I satellites. In addition, Figure 12.3 shows other precipitation data
sources which include the University of Arizona, Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN) (Hsu et al., 1997) and
the Higgins interpolated gauge data from NOAA Cooperative Institute for Research in
Environmental Sciences (CIRES) Climate Diagnostic Center (CDC). Since much of this
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NCEP GDAS Model Derived / Precip (MM/OAY) / Jul ~ Dec 2001

Figure 12.3 Comparison of partial North American precipitation estimates for July-December
2001, Precipitation is a key forcing parameter for LDAS modelling and data assimilation
{courtesy J. Gottschalck)

data is spatially and temporaily limited, LDAS also provides options to merge the sparse
observational data with the baseline modelled data.

Plate 12 illustrates SMMR-derived surface soil moisture used to constrain a land surface
model prediction using a one-dimensional extended Kalman filter (Walker and Houser,
2001). The SMMR has similar frequencies to the recently launched AMSR sensor on
the EOS Aquas satellite. The plots in the top row show SMMR-derived soil moisture
with LDAS forcing (input) data of snow depth and precipitation. The middle row shows
LDAS-simulated soil moisture at the surface (left), root zone (centre) and over the soil
layer profile (right). The assimilated surface moisture plots (bottom row) exhibit a soil
moaisture increase from the modelled data, especially in the northern Great Plains and south
central US. Inspection of the Plate demonstrates how sparse observational data (upper-
left) may be used in conjunction with more temporally and spatially covered model data.
Approximately 15% of the area is observational data used in data assimilation with the
contiguous modelling data. In the Kalman filtering technique the error covariances are
used to provide an assimilated output that differs from both the observational and modelled
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data (Plate 12). This is the first known use of actual satellite-derived soil moisture within
an assimilation framework.

12.5 Future Directions

The LDAS projects will continue to incorporate new model and observation information
to improve land surface knowledge. The fourth LDAS model to be implemented soon is
the Catchment Land Surface Model (CLSM) (Koster ¢t al., 1998). The catchment model
signifies a major advance for the following two reasons. First, the modelling framework will
result in improved runoff prediction, and consequently, more realistic catchment-scale water
balance. Second, the downward slope movement of moisture within the watershed will yield
sub-catchment-scale surface and unsaturated-zone moisture variations, resulting in more
realistic intra-catchment surface flux variation prediction. Improved runoff simulation will
ultimately yield a more realistic continental stream flow from the land to the oceans, and
similarly, the within-catchment surface flux variations will result in more representative
catchment-average exchanges with the atmosphere.

The significant increase in satellite observations is providing a global supply of atmo-
sphere and land surface information available to improve land surface simulation and data
assimilation. For example, higher spatial resolution data (to 1 km) will become available
from MODIS and will include leaf area index (LAI), land surface temperature and surface
albedo products. Also, improved global land cover datasets (to 1 km) will be updated every
three months. New microwave sensors such as AMSR will permit improved precipitation
estimation critical to LSM water and energy budgets. Moreover, the planned Global Precip-
itation Mission (GPM) will involve a satellite constellation that will enhance precipitation
estimates to 3 hours temporally and to 4 km horizontal and 250 m vertical global cells.
GPM should greatly improve land surface water and energy budget data, and the improved
accuracy will benefit data assimilation.

Enhanced modelling and observational data with expanded computer power will improve
data assimilation in hydrological sciences. Previous developments of data assimilation in
hydrological applications have lagged behind in comparison to atmospheric and ocean
applications, However, the wealth of emerging Earth science data coupled with hydrolog-
ical land surface model physical improvements and computer capability will permit data
assimilation to be more routinely implemented. Massively parallel computing techniques
such as those developed by the Land Information System will support the near real-time
data assimilation throughput demands. In this mode, users will have a web-based interface
designed to facilitate broad and efficient information use for land, water and energy data
assimilation.
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