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Land DLand Data ata AAssimilation: ssimilation: OverviewOverview
Ultimate Goal:Ultimate Goal: OperationallyOperationally obtain high quality land surface conditions and fluxes.  obtain high quality land surface conditions and fluxes.  

•Optimal integration of land surface observations and predictions. 
•Continuous in time & space; local to global scales; retrospective, real-time, and forecasts.

Contributions:Contributions:
4DDA Fi ld 4DDA  d  d d t  fi ld  f l f  h (  •4DDA Fields: 4DDA process and new merged data fields useful for research (process 

understanding), applications (floods/agriculture/drought), and weather/climate prediction.
•Model refinement: Constant confrontation with observations will force model improvements.
•Forecast improvement: Better initial conditions and improved models, predictions of weather, p p , p ,
climate, and hydrologic phenomena on various timescales will improve.
•Observation needs: Define characteristics of most important observations, establish observation 
error criteria.

Components: Components: 
•Observation: Land surface forcing, storages(states), 
fluxes, and parameters (calibration).  
•Simulation: Land system process models (Hydrology  •Simulation: Land system process models (Hydrology, 
Biogeochemistry, etc.). 
•Assimilation: Short-term state constraints=Energy 
and Water Storage (Temperature, Snow, Soil Moisture).
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Land Surface Prediction: Accurate land model prediction is essential to enable data assimilation methods to 
propagate or extend scarce observations in time and space   Based on water and energy balance

Background: Background: Land Surface ModelingLand Surface Modeling

propagate or extend scarce observations in time and space.  Based on water and energy balance.

Input - Output = Storage Change
P + Gin –(Q + ET + Gout) = ΔS
Rn - G = Le + H

Dominant land surface horizontal processes: 
•Groundwater movement
•Horizontal temperature/water diffusion/advectionp
•Runoff

Assume 1-D Physics at mesoscales (greater than 100m)
•Gravity and gradient driven water & energy movement
•Horizontal processes very weakp y
•Observed horizontal correlations related to forcing
•Perturbation in state will not change neighbor

Ramifications of 1-D assumption:
•1-D (vertical) assimilation very cheap

ET and 
Precip

( ) y p
•No account for horizontal correlation in observation/model
•No “advection” of observation information horizontally

Land observations mostly at surface
•Surface skin temperature, soil moisture

Overland 
Flow
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p ,
•Snow cover
•Want to retrieve full root-zone profile; longer memory states

Nonlinear Processes
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Land Surface ObservationLand Surface Observation

Forcing
•Precipitation

Fluxes
•Evapotranspiration

Off-line LDAS Validation

p
•Wind
•Humidity
•Radiation
•Air Temperature

•Sensible Heat Flux
•Radiation
•Runoff
•Drainage•Air Temperature Drainage

Calibration
Parameters

States
Assimilation

•Soil Properties
•Vegetation Properties
•Elevation & Topography
•Subgrid Variation

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing

•Soil Moisture
•Temperature
•Snow
•Carbon

•Subgrid Variation
•Catchment Delineation
•River Connectivity
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Carbon
•Nitrogen
•Biomass



Land Surface Data Assimilation SummaryLand Surface Data Assimilation Summary
Data Assimilation merges observations & model predictions to provide a superior state estimate.

R t l d h d l i  t t  t  b ti  (t t   il i t )  i t t d i t   Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are integrated into a 
hydrologic model to improve prediction, produce research-quality data sets, and to enhance understanding.

Soil Moisture AssimilationSoil Moisture Assimilation Snow Cover AssimilationSnow Cover Assimilation Theory DevelopmentTheory Development
D t

Model In
tegration

Data
Insertion of Data 
into the Model

∂
∂

x
t dynamics physics x= + +Δ

Skin Temperature AssimilationSkin Temperature Assimilation Snow Water AssimilationSnow Water Assimilation

Assimilation with 
Bias Correction

SSM/I Snow ObservationSSM/I Snow Observation

Skin Temperature AssimilationSkin Temperature Assimilation Snow Water AssimilationSnow Water Assimilation

Observation

No Assimilation
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Assimilation
No Assimilation

Also: Also: Runoff, Evapotranspiration, groundwater (gravity), and 
Carbon Assimilation



Regional Scale: Regional Scale: WWalnut alnut GGulch (Monsoon 90)ulch (Monsoon 90)

Model Observation

Tombstone, AZ

0% 20%

Model with 4DDA
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Regional Scale: Regional Scale: WWalnut alnut GGulch (Monsoon 90)ulch (Monsoon 90)
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Soil Moisture Observation Error and Resolution Sensitivity:Soil Moisture Observation Error and Resolution Sensitivity:
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Fraternal Twin StudiesFraternal Twin Studies

•“Truth” from one model is assimilated into a second model with a biased parameterization
•The “truth” twin can be treated as a perfect observation to help illustrate conceptual problems 
beyond the assimilation procedure.

Model A
“T th”

Model B
“M d l”

Model B
“A i il ti T th”

Large

We must not only worry 
about obtaining an 

optimal model constraint, “Truth” “Model” “Assimilating Truth”

•ET
•ET

optimal model constraint, 
but also understand the 

implications of that 
constraint.

•SM

•ET

Small
•SM

•SM
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Model B is 
biased SM 

high and ET 
low

SM analysis is 
improved, but ET is 

degraded due to model 
bias



Mean Top-Layer Soil Moisture, Summer 1998

Fraternal Twin Demonstration
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AMSR-E & Model Soil Moisture Evaluation
Averaged soil moisture plot from 17 sites (SMEX03-Georgia) over AMSR-E 1/4 degree 

35

grid. Noah (10 cm and 5 cm layer SM), CLM (4.5 cm layer, layer 1+ layer 2), SCAN 
(just one station, 5 cm), AMSR-E (2 cm layer), SMEX03 (6 cm layer).
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Assimilation of AMSRAssimilation of AMSR--E Land Products into the NOAH LSME Land Products into the NOAH LSM

Noah Model (no assimilation) Unscaled AMSR-E Soil Moisture Unscaled AMSR-E SM Assimilation

Paul Houser, Xiwu Zhan, Alok Sahoo, Kristi Arsenault, Brian Cosgrove

CDF  Matching Q d  Offi i l AMSR E il GOALGOAL I l t K l  Filt  t  i il t  l d I l t K l  Filt  t  i il t  l d CDF  Matching

0.4

0.6

0.8

1.0 Quandary: Official AMSR-E soil 
moisture product has very low variability, 
wich produces an assimilated product 
with low variability

GOAL:GOAL: Implement Kalman Filter to assimilate land Implement Kalman Filter to assimilate land 
satellite data products into the Noah land surface satellite data products into the Noah land surface 
model installed in the Land Information System (LIS)model installed in the Land Information System (LIS)

PROGRESS:PROGRESS: Three data assimilation algorithms (DI, Three data assimilation algorithms (DI, 
EKF  EnKF) have been implemented in LIS and has EKF  EnKF) have been implemented in LIS and has 

Scaled AMSR-E Soil Moisture Scaled AMSR-E SM Assimilation

0.0

0.2

0 0.1 0.2 0.3 0.4 0.5

amsr
amsr_c
model

Soil Moisture [v/v]

CDF Matching: Scales AMSR-E to 
model climatology, erasing any real 
variability in AMSR-E

EKF, EnKF) have been implemented in LIS and has EKF, EnKF) have been implemented in LIS and has 
been tested with various soil moisture observationsbeen tested with various soil moisture observations

FUTURE:FUTURE:
••Expand validation of assimilation results.Expand validation of assimilation results.
Optimize ensemble perturbation proceduresOptimize ensemble perturbation procedures Scaled AMSR E Soil Moisture Scaled AMSR E SM Assimilation••Optimize ensemble perturbation proceduresOptimize ensemble perturbation procedures

••Finalize AMSRFinalize AMSR--E scaling philosophyE scaling philosophy
••Explore brightness temperature assimilation (CRTM)Explore brightness temperature assimilation (CRTM)
••Expand to snow cover assimilationExpand to snow cover assimilation
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Bias Correction Method (Dee and Todling’s, 1998, 2000)
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tunable bias correction parameters1,,0 ≤< αγμ



Bias correction comparison
• Model error ≈ Noah model 

forecast - AMSR_E retrieval
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Initial Results (contd.)
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SCAN
SM (%)

NOAH
10 cm 

NOAH
2 cm SM 

CLM 
5 cm SM 

CLM 
2 cm SM 

SSiB
2cm  SM 

AMSR-E
SM (%)

AMSR-E
SM (modified) 

LSMEM 
SM (%)SM (%) 10 cm 

SM (%)
2 cm SM 

(%)
5 cm SM 

(%)
2 cm SM 

(%)
2cm  SM 

(%)
SM (%) SM (modified) 

(%)
SM (%)

Mean 7.3778 20.2341 19.5564 10.9128 6.3228 22.5548 13.3272 7.3778 8.416

Standard Deviation 3.4093 3.3114 3.6245 5.3042 6.8852 6.0300 1.4467 3.4093 3.183

R 0 13 3672 10 6563 6 2920 1 3677 13 9912 10 4 0 48 18 63 4 18
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Range 0 -
16.0900

13.3672-
30.9001

10.6563-
33.4711

6.2920-
28.5757

1.3677-
28.1826

13.9912-
39.3903

10.4 -
18.1

0.48 - 18.63 4-18

Correlation Coefficient 
( w.r.t. SCAN SM)

1.00 0.5721 0.5136 0.4681 0.4388 0.4079 0.3838 0.3838 0.59



Snow Assimilation:Snow Assimilation: Background & MotivationBackground & Motivation

• In the northern hemisphere the snow cover ranges from 7% to 40% during the annual cycleIn the northern hemisphere the snow cover ranges from 7% to 40% during the annual cycle.
• The high albedo, low thermal conductivity and large spatial/temporal variability impact energy/water budgets.
• Sno/bare soil interfaces cause wind circulations.
• Direct replacement does not account for model bias.

-107.5 latitude; 40.0 longitude

Unique Snow Data Assimilation Considerations:
• “Dissappearing” layers and states
•Arbitrary redistribution of mass between layers
•Lack of information in SWE about snow density or depth•Lack of information in SWE about snow density or depth
•Lack of information in snow cover about snow mass & depth
•Biased forcing causing divergence between analysis steps
•OBSERVATIONS: Snow Cover, Snow Water Equiv., Tskin, Snow Fraction

3Z 3/15/99 3Z 3/16/990Z 3/16/99

Update
Time Update

Time
Melt
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Li E S D th ( ) 51N 90W 4/10/99 t 4/12/99

Mosaic LSM ExperimentsMosaic LSM Experiments

Liq Eqv Snow Depth (mm), 51N 90W, 4/10/99 to 4/12/99

Snow assimilation

Control
Temp + 1o

Snow assimilation 
occurs, replenishes 
snow pack

p
SW + 10%

Excessive snowmelt 
from model energy 
biases

• Excessive melting and replenishment of snow in experimental runs similar to 
that in the EDAS data
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Snow Data Assimilation: Snow Data Assimilation: Impact of biasImpact of bias
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Snowmelt adjustment (SMA) uses observed depth change to limit melt or accumulation

Snow Data Assimilation: Snow Data Assimilation: Correcting Correcting Impact of biasImpact of bias

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1ºAssimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1ºAssimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1º Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1º SMAAssimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1º SMA
j ( ) p g

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10%Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10%Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10% Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10% SMAAssimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10% SMA
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Error due to Error due to Error due to 

SMMR Snow Retrieval Error & Assimilation Impact

signal saturation snowpack liquid water body 
contamination
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Dong et al., 2005, 2006



GLDAS Snow Updates Using MODIS Data
21Z 17 January 2003

Enhanced MODIS Snow Cover (%) IMS Snow Cover SNOTEL and Co-op Network SWE (mm)

Rodell & Houser., 2004

Enhanced MODIS Snow Cover (%) IMS Snow Cover

Control Run Mosaic SWE (mm) Assimilated Mosaic SWE (mm) Mosaic SWE Difference (mm)
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Data Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results
DAO-PSAS Assimilation of ISCCP (IR 

Assimilation with 
Bias Correction

based) Surface Skin Temperature into a 
global 2 degree uncoupled land model.

Observation

Assimilation
No Assimilation

Surface temperature has very little memory
or inertia, so without a continuous correction, it 
tends drift toward the control case very quickly.
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Data Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results

Comparison with 
NCEP Reanalysis

•Skin temperature •Skin temperature 
improves significantly

•Sensible heat flux 
degrades due to degrades due to 
modified near-
atmosphere 
temperature gradient
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NOTE: NCEP not equal to TRUTH



Progress:
S il i t  ki  t t  d  i il ti  h  b  d t t d

Land Surface Data Assimilation: Land Surface Data Assimilation: SummarySummary

•Soil moisture, skin temperature, and snow assimilation have been demonstrated.
•Evapotranspiration, runoff, groundwater (gravity), and carbon assimilation are underway

Lessons Learned:Lessons Learned:
•We need to pay attention to the consequences of assimilation, not just the optimum assimilation 
technique.  i.e. does the model do silly things as a result of assimilation, as in snow assimilation 
example. 
L d d l h i   b  bi d  l di  t  i t fl  i  t t t•Land model physics can be biased, leading to incorrect fluxes, given correct states.

•Most land observations are only available at the surface, meaning that biased differences in 
surface observations and predictions can be improperly propagated to depth.
•Assimilation does not always make everything in the model better.  In the case of skin temperature y y g p
assimilation into an uncoupled model, biased air temperatures caused unreasonable near surface 
gradients to occur using assimilation that lead to questionable surface fluxes.

N  F t  Di tiNear Future Directions:
•Methods to address simultaneous model and observation bias.
•New observations (SMOS, Aquarius, SMAP, etc.).
•Coupled Assimilation (to avoid uncoupled biases).
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Coupled Assimilation (to avoid uncoupled biases).
•Mass/Energy conserving data assimilation techniques?


