An Integrated System for Sequential Hydrologic Data Assimilation using the Land Information System

Sujay V. Kumar^{a,b}, Rolf Reichle^{a,b}, Christa D. Peters-Lidard^b, Randal D. Koster^b, Xiwu Zhan^c, Wade T. Crow^d, John B. Eylander^e, Paul R. Houser^f

^aUniversity of Maryland Baltimore County,
Goddard Earth Sciences and Technology Center, Baltimore, MD

^bNASA Goddard Space Flight Center, Greenbelt, MD

^cNOAA-NESDIS Center for Satellite Applications and Research, Camp Springs, MD

^dUSDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD

^eAir Force Weather Agency, Offutt AFB, NE

^fCenter for Research on Environment and Water, Calverton, MD

Land Information System (LIS)

- A global, high performance, high resolution land surface modeling and data assimilation system.
- Use multiple state-of-the-art waterenergy-carbon land surface models (LSM's, e.g., Noah, Catchment, CLM).
- Use best available observations from surface and remote sensing platforms, to force and constrain LSMs
- Weather and climate model initialization and retrospective coupled modeling, Flood and water resources forecasting, Precision agriculture, Military mobility assessment, etc.

LIS

LIS Software Structure

Data Assimilation Abstractions in LIS

Sequence of Component Interactions for a sequential assimilation cycle

Data Assimilation Experiments

- To showcase the interoperable use of multiple data assimilation algorithms, land surface models and observations
- Two sets of assimilation experiments
 - Soil Moisture OSSEs using different LSMs
 - Snow OSSEs different types of snow observations
- OSSE setup
 - Control/Truth Run
 - Degraded/Open Loop Run
 - Generate synthetic observations
 - Assimilate synthetic observations into the open loop run

Data Assimilation Experiment Setup Soil Moisture OSSEs

- Modeling domain: CONUS
- Catchment and Noah LSMs
- April 1,2003 to December 1,2003.
- Control/Truth runs using GDAS forcing (spun up from January 1, 2000)

- OpenLoop runs using GEOS forcing
- Synthetic surface soil moisture observations generated from the truth runs by simulating typical retrieval errors associated with microwave sensors
 - masking of data for dense vegetation
 - data masks in the presence of rain/snow
 - random noise of 3% (volumetric) error
- Assimilation runs
 - Assimilate synthetic obs into the open loop runs, once a day at 12Z
 - Simulations using the EnKF

Time Series of RMSEs for Soil Moisture OSSEs

Noah

Root Zone

Catchment

Improvement Metric (RMSE(OpenLoop) - RMSE(EnKF)) for soil moisture OSSEs

Data Assimilation Experiment Setup Snow OSSEs

- Modeling domain: North America
- SWE Assimilation using EnKF and and SCA Assimilation using a rule based Direct Insertion (Rodell and Houser, 2004)
- October 1, 2003 to June 1, 2004
- Control/Truth runs using GDAS forcing (spun up from January 1, 2000) and Catchment LSM.
- OpenLoop runs using GEOS forcing and Noah LSM
- Synthetic SCA observations flagged using cloud cover masks from the MODIS Level 3 product (Hall et al, 2002)
- Synthetic SWE observations generated by
 - data masks for dense vegetation
 - random noise of 10mm error and 10mm minimum and 200mm maximum cutoffs
- Assimilation runs

SCA obs into the Open Loop run once a day at 12Z using the rule-based DI SWE obs into the Open Loop run once a day at 12Z using the EnKF

Improvement Metric for snow OSSEs

Time Series Comparisons of Snow fields

Spatially distributed variance of Normalized Innovations

Soil Moisture OSSE

Impact of ensemble size

Summary

- A flexible, reusable, extensible framework for land surface data assimilation
- System supports the use of
 - multiple assimilation algorithms
 - multiple LSMs
 - multiple observation types
 - different perturbation algorithms
- Data Assimilation framework also includes a generic diagnostics component
- High Performance Infrastructure in LIS provides adequate support for computationally intensive data assimilation simulations

Future DA Enhancements

- Addition of an online bias correction component
- Assimilation of other observation types (LST), combined use of multiple observations
- Support for variational, smoothing algorithms
- Addition of a generic optimization component

LIS Modeling Approach

Inputs

Topography, Soils (Static)

Land Cover, Leaf Area Index (Monthly)

Modeled +
Observed
Meteorology
(Hourly-3

Land Surface Models (LSM)
(Time steps=min-hr
Spatial grid=m-deg)

Physics

Outputs Applications

Soil Moisture & Temperature Profiles

Mobility Models (e.g.,FCS)

Surface Energy Atm. Models (e.g.,WRF

Surface Water Fluxes (e.g.,Runoff Water Resources/ Ocean Models

Surface States: Snowpack LAI (some) Carbon Models NASA

LIS Modeling Approach

Inputs

Topography, Soils (Static)

Land Cover, Leaf Area Index (Monthly)

Modeled + Observed Meteorology (Hourly-3

Observed
Surface States
(e.g., Snow,
Soil Moisture)

Physics

Land Surface Models (LSM)
(Time steps=min-hr
Spatial grid=m-deg)

Data Assimilation Modules

Outputs

Applications

Soil Moisture & Temperature Profiles

Mobility Models (e.g.,FCS)

Surface Energy Atm. Models (e.g.,WRF

Surface Water Fluxes (e.g.,Runoff Water Resources/ Ocean Models

Surface States: Snowpack LAI (some) Carbon Models NASA

Sequence of Component Interactions for a cycle of EnKF

