Soil Moisture Active Passive (SMAP)

Value Added Data Products

Paul R. Houser, CREW/GMU

SMAP GOAL: Map global soil moisture and freeze/thaw state to meet requirements for water, energy and carbon cycle sciences, weather and climate applications, and natural hazards decision support systems (Decadal Survey).

Key science questions: How is the water cycle changing? Are northern forests taking up or releasing carbon? Etc...

Key applications: Enhance accuracy of weather forecasts. Monitor floods and droughts. Track and predict spread of water-borne diseases. Enhance agricultural productivity. Aid in military mobility.

SMAP Value Added Data Products: SMAP will measure surface microwave emission and backscatter every 3 days, so methods to merge the active/passive signal, extend the surface information to the root zone, downscale in time & space, and produce subsequent hydrologic and carbon fluxes (Runoff, Evaporation, etc.) are required to meet science and application needs

SMAP: Applications

SMAP Data Will Improve Numerical Weather Prediction (NWP) Over the Continents by Accurately Initializing Land Surface States

SMAP: Value-Added Data Product Approach

Value-added data products through integration of models and multi-platform measurements

- Merge multi-source and multi-resolution data (GPM, MODIS, GPS, etc.).
- Account for missing data, and fill in spatial/temporal gaps.
- .Use noisy high-res radar to downscale course radiometer.
- Optimally combine SMAP active and passive observations (radiance assimilation).
- Downscale hydrologic information to be more useful for applications (obs overlap).
- Extend SMAP information to soil profile and to other hydrologic states (through modeling).

Land Surface Observation and Modeling vaporatio Precipitation Reflected and Longwave Off-line LSM **Validation** Radiation **Fluxes Forcing** Evapotranspiration **Energy** Water Precipitation **Balance** Balance Sensible Heat Flux Wind Interception Reservoir Evaporation Radiation Humidity Runoff Radiation Drainage Longwave Air Temperature **Leaf Drip** Radiation Runoff **Snow** Root Layer Calibration Percolation Recharge Layer **Parameters** Soil Properties **Drainage** Vegetation Properties **Assimilation Radiation forcing** Elevation & Topography **Soil Moisture** Vegetation Snow, Ice, Rainfall Snow **States** Subgrid Variation Soil Moisture Catchment Delineation Temperature Visible Light River Connectivity Snow Ultra Infrared Violet X-rays Gamma Carbon Microwaves Radio waves •Freeze/Thaw Nitrogen Biomass 30cm 3cm 0.3cm 300 µm 30_{um} Wavelengths Paul R. Houser, 10 July 2007, Page 4

SMAP: Soil Moisture Data Assimilation

Data Assimilation merges observations & model predictions to provide a superior state estimate.

$$\frac{\partial x}{\partial t} = dynamics + physics + \Delta x$$

Remotely-sensed hydrologic **state** or storage observations (*temperature, snow, soil moisture*) are integrated with a land surface model prediction.

- •Errors in land model prediction result from:
 - Initialization error.
 - Errors in atmospheric forcing data.
 - •Errors in LSM physics (model not perfect).
 - •Errors in representation (sub-grid processes).
 - •Errors in parameters (soil and vegetation).

Retrieving soil moisture profile using data assimilation

Sequential assimilation of surface measurements allows profile estimation through model-propagation of the joint probability density between the surface state and subsurface profile.

Example:

- Data assimilation (—)
- Truck-boom L-Band measurements
- in-situ ground-truth (•)

Retrieving soil moisture maps using remote sensing

An OSSE for the HYDROS soil moisture mission

2 radiometer observations Zhan et al., 2006 Paul R. Houser, 10 July 2007, Page 10

An OSSE for the HYDROS soil moisture mission

An OSSE for the HYDROS soil moisture mission

Product:

L4_5km_4DDA

Objective:

Merge multi-source and multiresolution data and models into the most comprehensive ever view of the global land surface conditions.

Surface soil moisture estimate over SGP region in Southern Great Plains: OSSE Radar and Radiometer Observations

SMAP Value Added Data Products

SMAP Value Added Data Products:

- merge the active/passive signal
- extend the surface information to the root zone
- downscale in time & space
- produce subsequent hydrologic and carbon fluxes (Runoff, Evaporation, NPP, etc.)

Readiness:

- -Relevance to science and applications are clear.
- Modeling and assimilation tools are mature and have been demonstrated.
- Hydros OSSE studies demonstrate SMAP specific value-added products.

Issues:

- Need to integrate freeze/thaw information in L4 model analysis
- Need additional field studies to optimize/calibrate algorithms for various landscapes.
- Need to work with end-users to optimize integrated system solutions.

