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Using a systems engineering approach we can merge advanced hydrologic process 
understanding, observing system data, and computing power to significantly improve 

Earth system prediction and critical water management applications

Surface temperature, soil moisture, and snow, Surface temperature, soil moisture, and snow, 
significantly influence Earth system processes significantly influence Earth system processes 

and predictability at multiple scalesand predictability at multiple scales
Improved knowledge of hydrologic conditions will Improved knowledge of hydrologic conditions will 

promote better land resource management, promote better land resource management, 
natural hazard mitigation, and homeland securitynatural hazard mitigation, and homeland security
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HHydrologic ydrologic DData ata AAssimilation: ssimilation: MotivationMotivation
Quantification and prediction of hydrologic variability Quantification and prediction of hydrologic variability 
•Critical for initialization and improvement of weather/climate forecasts

•Critical for applications such as floods, agriculture, military operations, etc.

Maturing of hydrologic observation and prediction tools:Maturing of hydrologic observation and prediction tools:
•Observation: Forcing, storages(states), fluxes, and parameters.  

•Simulation: Land process models (Hydrology, Biogeochemistry, etc.). 
•Assimilation: Short-term state constraints.

““LDASLDAS”” concept: concept: 
Bring state-of-the-art tools together to operationally obtain high quality land surface conditions and fluxes.

Critical Application

4DDA Value-
Added Products

Model PhysicsAncillary Data

Drought
Flood

Frozen
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Land Surface Prediction: Accurate land model prediction is essential to enable data assimilation methods to 
propagate or extend scarce observations in time and space.  Based on water and energy balance.

Input - Output = Storage Change
P + Gin –(Q + ET + Gout) = ∆S
Rn - G = Le + H

Background: Background: Land Surface ModelingLand Surface Modeling
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Mosaic (Koster, 1996):
Based on simple SiB physics.
Subgrid scale "mosaic"

CLM (Community Land Model, ~2003): 
Community developed “open-source” model.
10 soil layers, 5 layer snow scheme.

Catchment Model (Koster et al., 2003): 
Models in catchment space rather than on grids.
Uses Topmodel concepts to model groundwater

NOAA-NCEP-Noah Model (NCEP, ~2004): 
Operational Land Surface model.
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10%

GRASSLAND:
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SHRUBS:

NEEDLELEAF
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Also: vic, bucket, SiB, etc.
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Land Surface ObservationLand Surface Observation

Forcing
•Precipitation
•Wind
•Humidity
•Radiation
•Air Temperature

States
•Soil Moisture
•Temperature
•Snow
•Carbon
•Nitrogen
•Biomass

Fluxes
•Evapotranspiration
•Sensible Heat Flux
•Radiation
•Runoff
•Drainage

Calibration

Off-line LDAS Validation

Assimilation

Parameters
•Soil Properties
•Vegetation Properties
•Elevation & Topography
•Subgrid Variation
•Catchment Delineation
•River Connectivity

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing



Paul R. Houser, October 26, 2005, Page 5

Class Observation Technique Example Platform Temporal Spatial 
Leaf area and greenness optical/IR AVHRR, MODIS, NPOESS weekly 1km 
Albedo optical/IR MODIS, NPOESS weekly 1km 
Emissivity optical/IR MODIS, NPOESS weekly 1km 
Vegetation structure lidar ICESAT, ESSP lidar mission weekly-monthly 100m 

Land 
Parameters 

Topography in-situ survey, radar GTOPO30, SRTM episodic 30m–1km 
Wind profile radar    
Air Humidity and temperature IR, MW TOVS, GOES, AVHRR, MODIS, AMSR hourly-weekly 5 km 
Near- surface radiation optical/IR GOES, MODIS, CERES, ERBS, etc. hourly-weekly 1km 

Land 
Forcings 

Precipitation microwave/IR TRMM, GPM, SSMI, GEO-IR, etc. hourly-monthly 10km 
Temperature  IR, in-situ IR-GEO, MODIS, AVHRR, TOVS hourly-monthly 10m-4km 
Thermal anomalies IR, NIR, optical AVHRR, MODIS, TRMM daily-weekly 250m–1km 
Snow cover and water optical, microwave SSMI, TM, MODIS, AMSR, AVHRR, etc.  weekly-monthly 1km 
Freeze/thaw radar Quickscat, HYDROS, IceSAT, CryoSAT weekly 3km 
Total water storage gravity GRACE monthly 1000km 

Land 
States 

Soil moisture active/passive microwave SSMI, AMSR, HYDROS, SMOS, etc. 3-30 day 10-100 km 
Evapotranspiration optical/IR, in-situ MODIS, GOES hourly-weekly 10m-4km 
Solar radiation optical, IR MODIS, GOES, CERES, ERBS hourly-monthly  
Longwave radiation optical, IR MODIS, GOES hourly-monthly 10m-4km 

Land 
Fluxes 

Sensible heat flux IR MODIS, ASTER, GOES hourly-monthly 10m-4km 

Tools: Observations

The availability of new 
observations strongly 
motivates advances in 

understanding, prediction, 
and application. 
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Hydrologic Hydrologic DData ata AAssimilationssimilation

•Model errors result from:
•Initialization error.
•Errors in atmospheric forcing data. 
•Errors in LSM physics (model not perfect).
•Errors in representation (sub-grid processes).
•Errors in parameters (soil and vegetation).

Model In
tegration

Data
Insertion of Data 
into the Model

Data Assimilation merges observations & model predictions to provide a superior state estimate.

Hydrologic State or storage observations (temperature, snow, moisture) are integrated with models.  

∂
∂

x
t dynamics physics x= + +∆

Data Assimilation Methods: Numerical tools to combine disparate information.
1. Direct Insertion, Updating, or Dynamic Initialization: 
2. Newtonian Nudging:
3. Optimal or Statistical Interpolation:
4. Kalman Filtering: EKF & EnKF
5. Variational Approaches - Adjoint:

Real Time Data 
Collection

Observations have error and are irregular in time and space

Irregular 3D Data Flow in Real Time

Data Assimilation Model
Optimally merges 3D array of observations with previous predictions 

Interpolation in 
time and space

Mod
el 

Pre
dic

tio
n

Mod
el 

Pre
dic

tio
n

Mod
el 

Pre
dic

tio
n

Mod
el 

Pre
dic

tio
n

SVATS Model SVATS ModelSVATS Model

Quality
Control

Obs Model4DDA
Improved 
products, 
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understanding
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Land Surface Data Assimilation SummaryLand Surface Data Assimilation Summary
Data Assimilation merges observations & model predictions to provide a superior state estimate.

Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are integrated into a 
hydrologic model to improve prediction, produce research-quality data sets, and to enhance understanding.

Observation

Assimilation with 
Bias Correction

Assimilation
No Assimilation

SSM/I Snow ObservationSSM/I Snow Observation

∂
∂

x
t dynamics physics x= + +∆

Soil Moisture AssimilationSoil Moisture Assimilation

Skin Temperature AssimilationSkin Temperature Assimilation

Snow Cover AssimilationSnow Cover Assimilation

Snow Water AssimilationSnow Water Assimilation

Theory DevelopmentTheory Development

Model In
tegration

Data
Insertion of Data 
into the Model
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Soil Moisture Assimilation: Soil Moisture Assimilation: WWalnut alnut GGulch (Monsoon 90)ulch (Monsoon 90)

Model

Model with 4DDA

Observation

Tombstone, AZ

0% 20%

Houser et al., 1998
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Open Loop “Truth” Assimilation
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Open Loop “Truth” Assimilation
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Monthly Runoff

Impact of Soil Moisture Assimilation on Fluxes

Walker & Houser, 2002
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SMMR Soil Moisture Data Assimilation: SMMR Soil Moisture Data Assimilation: EKF EKF Catchment ModelCatchment Model
Summary:
•Assimilate SMMR derived soil moisture into the 
Catchment land surface model using a 1-D Extended 
Kalman Filter.
•Moisture anomalies compare favorably to NDVI and 
drought indexes.
•A similar analysis was performed over N. America with 
favorable results.

Walker, J. P., Ursino, N., Grayson, R. B., and Houser, P. R., 2003.
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GLDAS Snow Updates Using MODIS Data
21Z 17 January 2003

Control Run Mosaic SWE (mm)

Enhanced MODIS Snow Cover (%)

Assimilated Mosaic SWE (mm)

IMS Snow Cover
SNOTEL and Co-op Network 

SWE (mm)

Mosaic SWE Difference (mm)
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Model output
Assimilated output

Rodell et al., 2003
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Data Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results

Observation

Assimilation with 
Bias Correction

Assimilation
No Assimilation

Surface temperature has very little memory
or inertia, so without a continuous correction, it 
tends drift toward the control case very quickly.

FVDAS-CLM Assimilation of Remotely-
Sensed Surface Skin Temperature.

Radakovich et al., 2004
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Objective: A 1/4 degree (and other) global land modeling and assimilation system that uses all relevant observed forcing, 
storages, and validation.  Expand the current N. American LDAS to the globe. 1km global resolution goal

Model In
tegration

Data
Insertion of Data 
into the Model

Land Data 
Assimilation

Obs Model4DDA
Improved 
products, 

predictions, 
understanding

Consistent Global Intercomparison

CEOP

Observed 
Forcing

U.MD AVHRRU.MD AVHRR--
VegVeg CoverCover

Merged Merged PptPpt
ForcingForcing

TsurfaceTsurface

ETET

Snow WESnow WE

SW downSW down
Soil Soil 

Moisture Moisture 
(May 2001)(May 2001)
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Land Information SystemLand Information System http://http://lis.gsfc.nasa.govlis.gsfc.nasa.gov

Co-PIs: P. Houser, C. Peters-Lidard

Summary: LIS is a high performance set of land surface 
modeling (LSM) assimilation tools.

Applications: Weather and climate model initialization 
and coupled modeling,   Flood and water resources, 
precision agriculture, Mobility assessment …

LIS

External

Internal

200 Node “LIS” Cluster
Optimized I/O, GDS Servers

Memory Wallclock time CPU time 
(MB) (minutes) (minutes)

LDAS 3169 116.7 115.8
LIS 313 22 21.8

reduction factor 10.12 5.3 5.3

25km

1km

5km
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North American North American LDASLDAS: Mosaic : Mosaic ResultsResults
Paul R. HouserPaul R. Houser,, NASA/GSFC Hydrological SciencesNASA/GSFC Hydrological Sciences

LDAS Predictions: Hourly Sept. 2000 Precipitation and Soil Moisture
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Observations Predicted: AMIP

Predicted:  Scaled LDASPredicted: LDAS

Coupled Model Forecast: 1988 Midwestern U.S. Drought

(JJA precipitation anomalies, in mm/day)
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Koster et al., 2004
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Impact:  Coupled Earth System Modeling

Interoperability with standards:
• The Earth System Modeling 

Framework (ESMF)
• Assistance for Land Modeling 

Activities (ALMA)
LIS

Ocean 
Models

Atmos. 
Models

12-Hours Ahead 
Atmospheric Model 
Forecasts

LIS Impact Example: Coupling to a Weather Model

With
LIS

Without
LIS

Observed
Rainfall
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Current Status:
•The LIS code provides the backbone tools that are used in various applications: NLDAS, GLDAS, etc..
•Operational LDAS systems are developing and show promise for forecast improvement.
•Research supporting the LDAS concept are actively being pursued.

•Observation-driven model and driver development
•Ensemble physics (multi-model framework)
•Data assimilation development, mostly based on EnKF’s
•Innovative boundary layer coupling towards true global CRM’s
•Collaboration and partnering for end-user benefits

•The LDAS teams are committed to making their tools useful beyond the research realm.

Land Data Assimilation System: Land Data Assimilation System: SummarySummary

Future Directions

Data Assimilation Algorithm Development:
•Land models are highly nonlinear -> push for model independent assimilation algorithms.
•Radiance Assimilation – use forward models in the assimilation to assimilate brightness temperatures directly.
•Link calibration and assimilation in a logical and mutually beneficial way.
•Understand the potential of data assimilation downscaling

Land Modeling:
•Better correlation of land model states with observations
•Advanced processes: River runoff/routing, vegetation and carbon dynamics, groundwater interaction
•Parallel development of land model and their adjoints

Assimilate new types of data: 
•Streamflow, Vegetation dynamics, and Groundwater/total water storage (Gravity)
•Boundary layer structures/evapotranspiration

Coupled feedbacks: 
•Understand the impact of land assimilation feedbacks on coupled system predictions.

Model In
tegration

Data
Insertion of Data 
into the Model


