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Land Surface Prediction: Accurate land model prediction is essential to enable data assimilation methods to 
propagate or extend scarce observations in time and space.  Based on water and energy balance.

Input - Output = Storage Change
P + Gin –(Q + ET + Gout) = ΔS
Rn - G = Le + H

Background: Background: Land Surface ModelingLand Surface Modeling
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Mosaic (Koster, 1996):
Based on simple SiB physics.
Subgrid scale "mosaic"

CLM (Community Land Model, ~2003): 
Community developed “open-source” model.
10 soil layers, 5 layer snow scheme.

Catchment Model (Koster et al., 2003): 
Models in catchment space rather than on grids.
Uses Topmodel concepts to model groundwater

NOAA-NCEP-Noah Model (NCEP, ~2004): 
Operational Land Surface model.
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Also: vic, bucket, SiB, etc.
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Land Surface ObservationLand Surface Observation

Forcing
•Precipitation
•Wind
•Humidity
•Radiation
•Air Temperature

States
•Soil Moisture
•Temperature
•Snow
•Carbon
•Nitrogen
•Biomass

Fluxes
•Evapotranspiration
•Sensible Heat Flux
•Radiation
•Runoff
•Drainage

Calibration

Off-line LDAS Validation

Assimilation

Parameters
•Soil Properties
•Vegetation Properties
•Elevation & Topography
•Subgrid Variation
•Catchment Delineation
•River Connectivity

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing
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Hydrologic Hydrologic DData ata AAssimilationssimilation

Model errors result from:
• Initialization error.
• Errors in atmospheric forcing data. 
• Errors in LSM physics (model not perfect).
• Errors in representation (sub-grid processes).
• Errors in parameters (soil and vegetation).

Data Assimilation merges observations & model predictions to provide a superior state estimate.

Hydrologic State or storage observations (temperature, snow, moisture) are integrated with models.  

∂
∂

x
t dynamics physics x= + +Δ

Data Assimilation Methods: Numerical tools to combine disparate information.
1. Direct Insertion, Updating, or Dynamic Initialization: 
2. Newtonian Nudging:
3. Optimal or Statistical Interpolation:
4. Kalman Filtering: EKF & EnKF
5. Variational Approaches - Adjoint:

Real Time Data 
Collection

Observations have error and are irregular in time and space

Irregular 3D Data Flow in Real Time

Data Assimilation Model
Optimally merges 3D array of observations with previous predictions 
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Land DLand Data ata AAssimilation: ssimilation: OverviewOverview
Ultimate Goal:Ultimate Goal: OperationallyOperationally obtain high quality land surface conditions and fluxes.  obtain high quality land surface conditions and fluxes.  

•Optimal integration of land surface observations and predictions. 
•Continuous in time & space; local to global scales; retrospective, real-time, and forecasts.

Contributions:Contributions:
•4DDA Fields: 4DDA process and new merged data fields useful for research (process understanding), 
applications (floods/agriculture/drought), and weather/climate prediction.
•Model refinement: Constant confrontation with observations will force model improvements.
•Forecast improvement: Better initial conditions and improved models, predictions of weather, climate, and 
hydrologic phenomena on various timescales will improve.
•Observation needs: Define characteristics of most important observations, establish observation error criteria.

Components: Components: 
•Observation: Land surface forcing, storages(states), 
fluxes, and parameters (calibration).  
•Simulation: Land system process models (Hydrology, 
Biogeochemistry, etc.). 
•Assimilation: Short-term state constraints=Energy and 
Water Storage (Temperature, Snow, Soil Moisture).



Paul R. Houser, 6 November 2006, Page 6

Land Surface Data Assimilation SummaryLand Surface Data Assimilation Summary
Data Assimilation merges observations & model predictions to provide a superior state estimate.

Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are integrated into a 
hydrologic model to improve prediction, produce research-quality data sets, and to enhance understanding.

Observation

Assimilation with 
Bias Correction

Assimilation
No Assimilation

SSM/I Snow ObservationSSM/I Snow Observation

∂
∂

x
t dynamics physics x= + +Δ

Soil Moisture AssimilationSoil Moisture Assimilation

Skin Temperature AssimilationSkin Temperature Assimilation

Snow Cover AssimilationSnow Cover Assimilation

Snow Water AssimilationSnow Water Assimilation

Theory DevelopmentTheory Development

Model In
tegration

Data
Insertion of Data 
into the Model
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Objective: A 1/4 degree (and other) global land modeling and assimilation system that uses all relevant observed forcing, 
storages, and validation.  Expand the current N. American LDAS to the globe. 1km global resolution goal

Model In
tegration

Data
Insertion of Data 
into the Model

Land Data 
Assimilation

Obs Model4DDA
Improved 
products, 

predictions, 
understanding

Consistent Global Intercomparison

CEOP

Observed 
Forcing

U.MD AVHRRU.MD AVHRR--
VegVeg CoverCover

Merged Merged PptPpt
ForcingForcing

TsurfaceTsurface

ETET

Snow WESnow WE

SW downSW down
Soil Soil 

Moisture Moisture 
(May 2001)(May 2001)
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Land Information SystemLand Information System http://http://lis.gsfc.nasa.govlis.gsfc.nasa.gov

Co-PIs: P. Houser, C. Peters-Lidard

Summary: LIS is a high performance set of land surface 
modeling (LSM) assimilation tools.

Applications: Weather and climate model initialization 
and coupled modeling,   Flood and water resources, 
precision agriculture, Mobility assessment …

LIS

External

Internal

200 Node “LIS” Cluster
Optimized I/O, GDS Servers

Memory Wallclock time CPU time 
(MB) (minutes) (minutes)

LDAS 3169 116.7 115.8
LIS 313 22 21.8

reduction factor 10.12 5.3 5.3

25km

1km

5km
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North American North American LDASLDAS: Mosaic : Mosaic ResultsResults
Paul R. HouserPaul R. Houser,, NASA/GSFC Hydrological SciencesNASA/GSFC Hydrological Sciences

LDAS Predictions: Hourly Sept. 2000 Precipitation and Soil Moisture
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Observations Predicted: AMIP

Predicted:  Scaled LDASPredicted: LDAS

Coupled Model Forecast: 1988 Midwestern U.S. Drought

(JJA precipitation anomalies, in mm/day)
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Impact:  Coupled Earth System Modeling

Interoperability with standards:
• The Earth System Modeling 

Framework (ESMF)
• Assistance for Land Modeling 

Activities (ALMA)
LIS

Ocean 
Models

Atmos. 
Models

12-Hours Ahead 
Atmospheric Model 
Forecasts

LIS Impact Example: Coupling to a Weather Model

With
LIS

Without
LIS

Observed
Rainfall
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Regional Scale: Regional Scale: WWalnut alnut GGulch (Monsoon 90)ulch (Monsoon 90)
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Soil Moisture Observation Error and Resolution Sensitivity:Soil Moisture Observation Error and Resolution Sensitivity:
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Non-linear model issues

EKF error estimates diverge occasionally.

EnKF error estimates noisy for small ensemble (Ne=10).
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Fraternal Twin StudiesFraternal Twin Studies

•“Truth” from one model is assimilated into a second model with a biased parameterization
•The “truth” twin can be treated as a perfect observation to help illustrate conceptual problems 
beyond the assimilation procedure.

Model A
“Truth”

Model B
“Model”

Model B
“Assimilating Truth”

Small

Large

•SM

•ET

•SM

•ET

•SM

•ET

Model B is 
biased SM 

high and ET 
low

SM analysis is 
improved, but ET is 

degraded due to model 
bias

assimilation

Assume linear SM-ET 
relationship

We must not only worry 
about obtaining an 

optimal model constraint, 
but also understand the 

implications of that 
constraint.
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CLM=Truth
Mosaic=Faulty
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Snow Assimilation:Snow Assimilation: Background & MotivationBackground & Motivation

• In the northern hemisphere the snow cover ranges from 7% to 40% during the annual cycle.
• The high albedo, low thermal conductivity and large spatial/temporal variability impact energy/water budgets.
• Sno/bare soil interfaces cause wind circulations.
• Direct replacement does not account for model bias.

3Z 3/15/99 3Z 3/16/990Z 3/16/99

-107.5 latitude; 40.0 longitude

Update
Time Update

Time
Melt

Unique Snow Data Assimilation Considerations:
• “Dissappearing” layers and states
•Arbitrary redistribution of mass between layers
•Lack of information in SWE about snow density or depth
•Lack of information in snow cover about snow mass & depth
•Biased forcing causing divergence between analysis steps
•OBSERVATIONS: Snow Cover, Snow Water Equiv., Tskin, Snow Fraction
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Liq Eqv Snow Depth (mm), 51N 90W, 4/10/99 to 4/12/99

Mosaic LSM ExperimentsMosaic LSM Experiments

• Excessive melting and replenishment of snow 
in experimental runs similar to that in the 
EDAS data

Control
Temp + 1
SW + 10%

o

Excessive snowmelt 
from model energy 
biases

Snow assimilation 
occurs, replenishes 
snow pack
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Snow Data Assimilation: Snow Data Assimilation: Impact of biasImpact of bias
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Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1º

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10%

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1º

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10%

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1º

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10%

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1º SMA

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10% SMA

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, Tmp+1º SMA

Assimilation Flux as % of Total Precipitation, 9/98 to 8/99, SW+10% SMA

Snowmelt adjustment (SMA) uses observed depth change to limit melt or accumulation

Snow Data Assimilation: Snow Data Assimilation: Correcting Correcting Impact of biasImpact of bias
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Data Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results

Observation

Assimilation with 
Bias Correction

Assimilation
No Assimilation

Surface temperature has very little memory
or inertia, so without a continuous correction, it 
tends drift toward the control case very quickly.

DAO-PSAS Assimilation of ISCCP (IR 
based) Surface Skin Temperature into a 
global 2 degree uncoupled land model.
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Comparison with 
NCEP Reanalysis

•Skin temperature 
improves significantly

•Sensible heat flux 
degrades due to 
modified near-
atmosphere 
temperature gradient

NOTE: NCEP not equal to TRUTH

Data Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results
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Current Status:
•Soil moisture, skin temperature, and snow assimilation have been demonstrated.
•Evapotranspiration, runoff, groundwater (gravity), and carbon assimilation are underway

Data Assimilation Tradeoffs:
•Tradeoff between using complex data assimilation techniques, the ability to use all the available data and 
operational needs and realities due to the large computational burdens.
•Tradeoff in dimensionality of data assimilation methods –need may depend on scale.
•Tradeoff between fine resolution and large area implementation.

Land Surface Data Assimilation Realities
•Large-scale land data assimilation is severely limited by a lack of observations.
•Observation and model errors are not known – educated guesses must be used.
•We need to pay attention to the consequences of assimilation, not just the optimum assimilation technique.  i.e. 
does the model do silly things as a result of assimilation, as in snow assimilation example. 
•Land model physics can be biased, leading to incorrect fluxes, given correct states.
•Most land observations are only available at the surface, meaning that biased differences in surface 
observations and predictions can be improperly propagated to depth.
•Assimilation does not always make everything in the model better.  In the case of skin temperature assimilation 
into an uncoupled model, biased air temperatures caused unreasonable near surface gradients to occur using 
assimilation that lead to questionable surface fluxes.

Land Surface Data Assimilation: Land Surface Data Assimilation: Progress and RealitiesProgress and Realities
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• Check for global balance/consistency:

• Use optimal amount of satellite-based information 
from disparate data sets which comprise the 
major global water cycle components (i.e. atmos, 
ocean and land)

Global Water Balance: Motivation and Methodology
• Assess capability/consistency of “rate” changes in global water cycle detection.
• Assess our global-scale capabilities for providing an observed climatology and 
evaluation tool.
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Precipitation (1979-1999): 
• Global Precipitation Climatology Project (GPCP): Adler et al., (2003)
• CPC Merged Analysis of Precipitation (CMAP): Xie and Arkin (1997)

Ocean Evaporation (1987-1999):
• Goddard Satellite-based Surface Turbulent Fluxes Version 2

– GSSTF2: Chou et al., (2003)
• Hamburg Ocean Atmosphere Parameters and Fluxes from Satellites

– HOAPS-G: Bentamy et al. (2003) and Fairall et al. (1996)

Land Evaporation:
• Global Offline Land Dataset (GOLD) Versions 1 (1979-1999) and Version 2 

(1959-2002): Dirmeyer et al., (2005):
• Global Soil Wetness Project Phase 2 (GSWP2): 1986-1995

– 13 Global land models forced with ISLSCP II data at 1° resolution

Precipitable Water (1988-present): NASA Global Water Vapor Project (NVAP)
Model Output: IPCC Climate of 20th Century Runs

Global Water Budget Synthesis Products
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Geographic Distribution of Annual P-E (mm)

• Evaporation excess nearly ubiquitous over sub-tropical oceans, with a sharp contrast at coastal regions.
• Equatorial ocean evaporation minimum consistent with other findings (e.g. Seager et al., 2003).
• Tropical land areas show richest excess in precipitation.
• Major desert regions, tundra, and mountainous regions all indicate deficit to marginally-balanced conditions.
• Mid-latitude and boreal coastal/maritime environments exhibit adequate precipitation supply over evaporation.
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• Global annual mean precipitation and evaporation balance to ~5%.
• Imbalance exceeds global estimate of annual precipitation error.

Annual Mean Statistics

HOAPS+GOLD
4.56E+17

CMAP
4.74E+17 ± 0.04E+17

1.7E+163.93E+173.72E+17 ± 0.04E+17

~4.2E+16GOLD2: 0.62E+171.02E+17 ± 0.02E+17

~ 2.4E+16

GSSTF2+GOLD 
5.03E+17

GPCP
4.85E+17 ± 0.06E+17

Global

6.5E+164.41E+173.80E+17 ± 0.06E+17
Ocean

~4.0E+16GOLD1: 0.64E+171.05E+17 ± 0.02E+17
Land

| P-E |EvaporationPrecipitationUnits in 
kg/yr

Adapted from Schlosser and 
Houser (2006, submitted)

Note: Total atmospheric water storage ~ 1016 kg
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• Uncertainties in global precipitation, land evapotranspiration, and/or changes in TPW cannot 
account for discrepancies in NH warm-season months.

Averaged Annual Cycles of Global Evap and Precip

Adapted from Schlosser and Houser (2006, submitted)

PE
dt
Qd

−=
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Comparison of Global Fluxes to Previous Estimates

• Global fluxes of precipitation and evaporation are comparable to previous century of estimates.
• No discernable trend is seen in both compilations of the flux estimates.
• The notable disparity with this study is the lower values of both precipitation (not shown) and 

evaporation flux estimates over land.
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GSWP-2 Precipitation

GSWP-2 Evaporation
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Assessing Historical Land-Flux Estimates

• Global fluxes of precipitation and evaporation are comparable to previous century of estimates.
• No discernable trend is seen in both compilations of the flux estimates.
• The notable disparity with the GOLD study is the lower values over land.
• Scatter of GSWP2 estimates comparable to previous century’s estimates.

Land Only
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• Model-based (offline and coupled) scatter of estimates marginally higher than compilation of “modern”
observationally-based estimates.

Legacy of estimates

B0 P1 P2 P3

Mean Annual Global Land Precipitation and Evaporation (kg/yr)

GSWP2 IPCC C20C
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• Global fluxes comparable among the more recent estimates.
• Early 20th century fluxes highly variable and exhibit marginal trend.

Legacy of estimates
Schlosser and Houser, 2006 (submitted) GSWP2

IPCC C20CB0 P1 P2 P3

(Implied) Global Annual River Discharge
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AGCM Precipitation and Evaporation Evaluation

• Observed averaged annual evaporation and precipitation mass flux balance to within 1%.
– However, interannual global variations considerably uncorrelated.

• AGCM mean “rate” of annual global water cycle exceeds observed (~15%). 
• AGCM interannual variability of annual global precip/evap ~50%/35% lower than observed.
• Relative contributions of land and ocean fluxes differ considerably.

– What are the sources of these discrepancies (both in the models and “observations”)?

• Trend in “observed” global evaporation (~1 %/year), but no trend in precipitation.
• Trend in AGCM global water-cycle rate during 1987-1999 and order of magnitude smaller.

– Source of modeled trend from prescribed SSTs, is the response accurate?
– Observations insufficient to detect AGCM trend (e.g. Ziegler et al., 2002).

Annual Global Evaporation Fluxes (m3/year)
(1987-1999)
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Summary
•Observationally-based estimates of global water fluxes balance, on an 
annual basis, to within 10% (~1016 kg/yr or ~50 teratons/yr) and fall 
within the range of previous estimates.

– Avg. U.S. yearly consumption ~1014 kg (USDA)
– Total amount of water stored in atmosphere ~1016 kg

•AGCM results imply more than a 0.1%/yr precision required for global 
trend detection, and consistency between precipitation and 
evaporation (e.g. Bosilovich et al., 2004).

•Ocean evaporation estimates require further attention, trend validation.
•For the forseeable future, global land evaporation estimates will 
primarily rely on model simulations/assimilation

– Veracity and quality of models and (forcing) data
– Further analysis of GSWP 2 (1986-1995) land simulations

•Extend/merge synthesis to current/pending satellites and 
complementary/blended data

– TRMM+constellation, GPM, EOS-Aqua/Terra and QuickScat
– Clouds: e.g. ISCCP, CloudSat, CALIPSO
– Other precipitation datasets – e.g. CMAP, GHCN, CRU
– GRACE, IceSat, Aquarius, SMOS, etc…


