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Background: Land Surface Modeling %

Land Surface Prediction: Accurate land model prediction is essential to enable data assimilation methods to
propagate or extend scarce observations in time and space. Based on water and energy balance.
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Uses Topmodel concepts to model groundwater
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Land Surface Observation
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Hydrologic Data Assimilation

Data Assimilation merges observations & model predictions to provide a superiog State estimate.

% = dynamics + physics+ Ax @ 40DA [ Model

| Hydrologic State or storage observations (temperature, snow, moisture) are integrated with models.

ta Assimilation Methods: Numerical tools to combine disparate information.
1. Direct Insertion, Updating, or Dynamic Initialization:
2. Newtonian Nudging: Real Time Data

~ 3. Optimal or Statistical Interpolation: Cellgglion
4, Kalman Filtering: EKF & EnKF ‘

Variational Approaches - Adjoint:

Observations have error and are irregular in time and space

h #regular @ Data Fliw in ahTme >
Model errors result from: Quality ~do” 4~ Interpolation in
e . Control * 1 time and space
* |nitialization error. _ : _ _ _ N
» Errors in atmospheric forcing data. Data Assimilation Model

Optlmflly merges 3D array of observations W|th£reV|ous predlctlons

= * Errors in LSM physics (model not perfect). & z T _
* Errors in representation (sub-grid processes). / 1§—’ M lg / l ;
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* Errors in parameters (soil and vegetation). <~ _...¥Y3 ..
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Land Surface Data Assimilation Summary

Data Assimilation merges observations & model predictions to provide a superior state estimate. |
Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are integrated into a -
hydrologic model to improve prediction, produce research-quality data sets, and to enhance understanding.
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Soil Moisture Assimilation

Day—Time Scil Maoisture (12:00h, July 2, 1984)
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Insertion of Data
into the Model

025 [+ R
EN et on]

. Skin Temperature Assimilation

E update x and P

observation 1
—— 1

1
] + 1
.- S
1 = 1
1 Pk! '

—OLCA Surface Skin Temperature (K) 34*-100"
—o0(F)
—n(P-I1BC) ' ' |
—ISCCP ! ~ .
e . . . . J : - xk : Pi :
Assimilation with/ ), EaE. /’ 5
. Bias Correctio/ Srror covariance P _| i
08 ll t k-1 t k t ka1
- I@\ update ensemble
members x!
2 i xi+ observation '
- L ke - i
- % No Assimilatign
B;EJ?JL = s b = 5 i !‘IE iy (TN w;; TEOF  140F  1A0F  iZ0F  11GF  10OF o;:‘ T : zr?zg;:lto?e of P
Y 5?5 60 | states and compute :
- . . . t. sample covariance P t. ; 1
& CREW Also: Runoff, Evapotranspiration, groundwater (gravity), and et K o1

b v Lidopaar 3 Carbon Assimilation Paul R. Houser, 13 December 2006, Page 5



O - 18%

Calibrated Control

Updating

Scale(km)
—_—
0 5

Statistical Corrections Newtonian Nudging

v -

Random SI

< Ryr
i

Superobservation S!‘ "*..._{




Soil Moisture Observation Error and Resolution Sensitivity:
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Fraternal Twin Studies g

- *“Truth” from one model is assimilated into a second model with a biased parameterization
~ +The “truth” twin can be treated as a perfect observation to help illustrate conceptual problems

I beyond the assimilation procedure.

t We must not only worry
Large . about obtaining an
ode Model B Model B . .
_ “Truth” “Model” “Assimilating Truth” Optlmal model constralnt,
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Fraternal Twin Demonstration
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Evaluation of SMMR Soil Moisture
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Snow Assimilation: Background & Motivation

Sno/bare soil interfaces cause wind circulations.
Direct replacement does not account for model bias.

e Snow Data Assimilation Considerations:
— «“Dissappearing” layers and states
sArbitrary redistribution of mass between layers
sLack of information in SWE about snow density or depth
ack of information in snow cover about snow mass & depth
*Biased forcing causing divergence between analysis steps

In the northern hemisphere the snow cover ranges from 7% to 40% during the annual cycle.
The high albedo, low thermal conductivity and large spatial/temporal variability impact energy/water budgets.
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Mosaic LSM Experiments
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Snow Data Assimilation: Impact of bias w

Assimilation Flux (kg/m?) Sep 1998 to Aug 1999, SW+10%
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SMMR Snow Retrieval Error & Assimilation Impact
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Data Assimilation: T, Assimilation Results

DAO-PSAS Assimilation of ISCCP (IR o Surface Skin Temperature (K) 34°,-100"
= based) Surface Skin Temperature intoa ~ —2¢_mB ™

ﬂ%l 2 degree uncoupled land model. Assimilation with
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Surface temperature has very little memory
or inertia, so without a continuous correction, it
tends drift toward the control case very quickly.
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Data Assimilation: T, Assimilation Results
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Land Surface Data Assimilation: Progress and Realities

Current Status:
«Soil moisture, skin temperature, and snow assimilation have been demonstrated.
Evapotranspiration, runoff, groundwater (gravity), and carbon assimilation are underway

i

.. Data Assimilation Tradeoffs:

*Tradeoff between using complex data assimilation techniques, the ability to use all the available data and
operational needs and realities due to the large computational burdens.

*Tradeoff in dimensionality of data assimilation methods —need may depend on scale.

- eTradeoff between fine resolution and large area implementation.

L8

Surface Data Assimilation Realities

sLarge-scale land data assimilation is severely limited by a lack of observations.

*Observation and model errors are not known — educated guesses must be used.

*\We need to pay attention to the consequences of assimilation, not just the optimum assimilation technique. i.e.
does the model do silly things as a result of assimilation, as in snow assimilation example.

L and model physics can be biased, leading to incorrect fluxes, given correct states.

*Most land observations are only available at the surface, meaning that biased differences in surface
observations and predictions can be improperly propagated to depth.

+Assimilation does not always make everything in the model better. In the case of skin temperature assimilation
into an uncoupled model, biased air temperatures caused unreasonable near surface gradients to occur using
assimilation that lead to questionable surface fluxes.
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