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Land Surface Prediction: Accurate land model prediction is essential to enable data assimilation methods to 
propagate or extend scarce observations in time and space.  Based on water and energy balance.

Input - Output = Storage Change
P + Gin –(Q + ET + Gout) = ΔS
Rn - G = Le + H

Background: Background: Land Surface ModelingLand Surface Modeling
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Mosaic (Koster, 1996):
Based on simple SiB physics.
Subgrid scale "mosaic"

CLM (Community Land Model, ~2003): 
Community developed “open-source” model.
10 soil layers, 5 layer snow scheme.

Catchment Model (Koster et al., 2003): 
Models in catchment space rather than on grids.
Uses Topmodel concepts to model groundwater

NOAA-NCEP-Noah Model (NCEP, ~2004): 
Operational Land Surface model.
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Also: vic, bucket, SiB, etc.
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Land Surface ObservationLand Surface Observation

Forcing
•Precipitation
•Wind
•Humidity
•Radiation
•Air Temperature

States
•Soil Moisture
•Temperature
•Snow
•Carbon
•Nitrogen
•Biomass

Fluxes
•Evapotranspiration
•Sensible Heat Flux
•Radiation
•Runoff
•Drainage

Calibration

Off-line LDAS Validation

Assimilation

Parameters
•Soil Properties
•Vegetation Properties
•Elevation & Topography
•Subgrid Variation
•Catchment Delineation
•River Connectivity

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing
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Hydrologic Hydrologic DData ata AAssimilationssimilation

Model errors result from:
• Initialization error.
• Errors in atmospheric forcing data. 
• Errors in LSM physics (model not perfect).
• Errors in representation (sub-grid processes).
• Errors in parameters (soil and vegetation).

Data Assimilation merges observations & model predictions to provide a superior state estimate.

Hydrologic State or storage observations (temperature, snow, moisture) are integrated with models.  

∂
∂

x
t dynamics physics x= + +Δ

Data Assimilation Methods: Numerical tools to combine disparate information.
1. Direct Insertion, Updating, or Dynamic Initialization: 
2. Newtonian Nudging:
3. Optimal or Statistical Interpolation:
4. Kalman Filtering: EKF & EnKF
5. Variational Approaches - Adjoint:

Real Time Data 
Collection

Observations have error and are irregular in time and space

Irregular 3D Data Flow in Real Time

Data Assimilation Model
Optimally merges 3D array of observations with previous predictions 

Interpolation in 
time and space

Mod
el 

Pre
dic

tio
n

Mod
el 

Pre
dic

tio
n

Mod
el 

Pre
dic

tio
n

Mod
el 

Pre
dic

tio
n

SVATS Model SVATS ModelSVATS Model

Quality
Control

Obs Model4DDA
Improved 
products, 

predictions, 
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Land Surface Data Assimilation SummaryLand Surface Data Assimilation Summary
Data Assimilation merges observations & model predictions to provide a superior state estimate.

Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are integrated into a 
hydrologic model to improve prediction, produce research-quality data sets, and to enhance understanding.

Observation

Assimilation with 
Bias Correction

Assimilation
No Assimilation

SSM/I Snow ObservationSSM/I Snow Observation

∂
∂

x
t dynamics physics x= + +Δ

Soil Moisture AssimilationSoil Moisture Assimilation

Skin Temperature AssimilationSkin Temperature Assimilation

Snow Cover AssimilationSnow Cover Assimilation

Snow Water AssimilationSnow Water Assimilation

Theory DevelopmentTheory Development

Model In
tegration

Data
Insertion of Data 
into the Model

Also: Also: Runoff, Evapotranspiration, groundwater (gravity), and 
Carbon Assimilation
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Regional Scale: Regional Scale: WWalnut alnut GGulch (Monsoon 90)ulch (Monsoon 90)
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Soil Moisture Observation Error and Resolution Sensitivity:Soil Moisture Observation Error and Resolution Sensitivity:
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NOTE: 
Assimilation of 
near-surface soil 
moisture can 
degrade profile 
soil moisture if 
errors are not 
known perfectly
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Fraternal Twin StudiesFraternal Twin Studies

•“Truth” from one model is assimilated into a second model with a biased parameterization
•The “truth” twin can be treated as a perfect observation to help illustrate conceptual problems 
beyond the assimilation procedure.

Model A
“Truth”

Model B
“Model”

Model B
“Assimilating Truth”

Small

Large

•SM

•ET

•SM

•ET

•SM

•ET

Model B is 
biased SM 

high and ET 
low

SM analysis is 
improved, but ET is 

degraded due to model 
bias

assimilation

Assume linear SM-ET 
relationship

We must not only worry 
about obtaining an 

optimal model constraint, 
but also understand the 

implications of that 
constraint.
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CLM=Truth
Mosaic=Faulty
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Fraternal Twin Demonstration
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Averaged soil moisture plot over AMSR-E 1/4 degree grid at SMEX03. 
Noah (2 cm layer SM), CLM (2 cm layer, layer 1), SSiB (2 cm top layer), 

SCAN (just one station, 5 cm), AMSR-E (2 cm layer), SMEX03 (3 cm layer), 
LSMEM (2 cm layer).

Evaluation of SMMR Soil Moisture
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Snow Assimilation:Snow Assimilation: Background & MotivationBackground & Motivation

• In the northern hemisphere the snow cover ranges from 7% to 40% during the annual cycle.
• The high albedo, low thermal conductivity and large spatial/temporal variability impact energy/water budgets.
• Sno/bare soil interfaces cause wind circulations.
• Direct replacement does not account for model bias.

3Z 3/15/99 3Z 3/16/990Z 3/16/99

-107.5 latitude; 40.0 longitude

Update
Time Update

Time
Melt

Unique Snow Data Assimilation Considerations:
• “Dissappearing” layers and states
•Arbitrary redistribution of mass between layers
•Lack of information in SWE about snow density or depth
•Lack of information in snow cover about snow mass & depth
•Biased forcing causing divergence between analysis steps
•OBSERVATIONS: Snow Cover, Snow Water Equiv., Tskin, Snow Fraction
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Liq Eqv Snow Depth (mm), 51N 90W, 4/10/99 to 4/12/99

Mosaic LSM ExperimentsMosaic LSM Experiments

• Excessive melting and replenishment of snow 
in experimental runs similar to that in the 
EDAS data

Control
Temp + 1
SW + 10%

o

Excessive snowmelt 
from model energy 
biases

Snow assimilation 
occurs, replenishes 
snow pack
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Snow Data Assimilation: Snow Data Assimilation: Impact of biasImpact of bias
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Error due to 
signal saturation

Error due to 
snowpack liquid

Error due to 
water body 
contamination

SMMR Snow Retrieval Error & Assimilation Impact

Dong et al., 2005, 2006
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Data Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results

Observation

Assimilation with 
Bias Correction

Assimilation
No Assimilation

Surface temperature has very little memory
or inertia, so without a continuous correction, it 
tends drift toward the control case very quickly.

DAO-PSAS Assimilation of ISCCP (IR 
based) Surface Skin Temperature into a 
global 2 degree uncoupled land model.
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Comparison with 
NCEP Reanalysis

•Skin temperature 
improves significantly

•Sensible heat flux 
degrades due to 
modified near-
atmosphere 
temperature gradient

NOTE: NCEP not equal to TRUTH

Data Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results
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Current Status:
•Soil moisture, skin temperature, and snow assimilation have been demonstrated.
•Evapotranspiration, runoff, groundwater (gravity), and carbon assimilation are underway

Data Assimilation Tradeoffs:
•Tradeoff between using complex data assimilation techniques, the ability to use all the available data and 
operational needs and realities due to the large computational burdens.
•Tradeoff in dimensionality of data assimilation methods –need may depend on scale.
•Tradeoff between fine resolution and large area implementation.

Land Surface Data Assimilation Realities
•Large-scale land data assimilation is severely limited by a lack of observations.
•Observation and model errors are not known – educated guesses must be used.
•We need to pay attention to the consequences of assimilation, not just the optimum assimilation technique.  i.e. 
does the model do silly things as a result of assimilation, as in snow assimilation example. 
•Land model physics can be biased, leading to incorrect fluxes, given correct states.
•Most land observations are only available at the surface, meaning that biased differences in surface 
observations and predictions can be improperly propagated to depth.
•Assimilation does not always make everything in the model better.  In the case of skin temperature assimilation 
into an uncoupled model, biased air temperatures caused unreasonable near surface gradients to occur using 
assimilation that lead to questionable surface fluxes.

Land Surface Data Assimilation: Land Surface Data Assimilation: Progress and RealitiesProgress and Realities


