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1. Introduction

Chamney et al. (1969) first suggested combining current and past data in an explicit dynamical
model, using the model’s prognostic equations to provide time continuity and dynamic coupling
amongst the fields (Figure 1). This concept has evolved into a family of techniques known as four-
dimensional data assimilation. “‘Assimilation is the process of finding the model representation
which is most consistent with the observations” (Lorenc, 1995). In essence, data assimilation
merges a range of diverse data fields with a model prediction to provide that model with the best
estimate of the current state of the natural environment so that it can then make more accurate
predictions. The application of data assimilation in hydrology has been limited to a few one-
dimensional, largely theoretical studies (i.e. Entekhabi et al., 1994; Milly, 1986), primarily due to the
lack of sufficient spatially-distributed hydrologic observations (McLaughlin, 1995). However, the
feasibility of synthesizing distributed fields of soil moisture by the novel application of four-
dimensional data assimilation applied in a hydrological model was demonstrated by Houser et al.
(1998). Six Push Broom Microwave Radiometer images gathered over the United States
Department of Agriculture, Agricultural Research Service Walnut Gulch Experimental Watershed
in southeast Arizona were assimilated into a land surface model using several alternative
assimilation procedures. Modification of traditional assimilation methods was required to use these
high-density Push Broom Microwave Radiometer observations. The images were found to contain
horizontal correlations with length scales of several tens of kilometres, thus allowing information to
be advected beyond the area of the image. Information on surface soil moisture was also assimilated
into the subsurface using knowledge of the surface-subsurface correlation. Newtonian nudging
assimilation procedures were found to be preferable to other techniques because they nearly preserve
the observed patterns within the sampled region, but also yield plausible patterns in unmeasured
regions, and allow information to be advected in time.

The feasibility of land surface data assimilation methods has been recently tested in research
projects conducted at Goddard Space Flight Center, Massachusetts Institute of Technology, and
several other institutions. This research focuses on: (1) the use of a one-dimensional Kalman filtering
based land assimilation strategy that expands upon the one-dimensional, ' theoretical assimilation
algorithms developed by Entekhabi et al. (1994) and Milly, (1986), and (2) the four-dimensional
data assimilation strategies developed by Houser et al. (1998) and Walker et al. (1999).
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Figure 1. The land surface data assimilation process.

2. The Kalman filter

The Kalman filter attempts to obtain an optimal estimate of the land surface state by combining
observations of that state with a land surface model forecast of that state. The Kalman filter has been
extensively utilized in data assimilation research (Ghil ez al., 1981; Cohn, 1982). The Kalman filter
assimilation scheme is a linearized statistical approach that provides a statistically optimal update of
the system states, based on the relative magnitudes of the covariances of both the model system state
estimate and the observations. The principal advantage of this approach is that the Kalman filter
provides a framework within which the entire system is updated with covariances representing the
reliability of the observations and model prediction.

The Kalman filter algoritm (Kalman, 1960) tracks the conditional mean of a statistically
optimal estimate of a state vector X through a series of forecasting and update steps. To apply the
Kalman filter, the equations for evolving the system states must be written in the linear state space
formulation of Equation (1). When these equations are non-linear, the Kalman filter is called the
extended Kalman filter, and is an approximation of the non-linear system that is based on first-order
linearization. Walker and Houser (2001) have implemented a one-dimensional version of the
extended Kalman filter with the simplifying assumption that errors in different catchments are
uncorrelated.

The ensemble Kalman filter is an alternative to the extended Kalman filter for non-linear
problems (Evensen, 1994; Houtekamer and Mitchell, 1998). The ensemble Kalman filter is based
on the propagation of an ensemble of states from which the required covariance information is
obtained at the time of the update. This approach has successfully been introduced into ocean
assimilation at the National Aeronautics and Space Administration Seasonal-to-Interannual
Prediction Project (NSIPP) by Keppenne and Rienecker (2000). Reichle et al. (2001) applied the
ensemble Kalman filter to the soil moisture estimation problem and found it performs well, with the
distinct advantage that the error covariance propagation is better behaved in the presence of large
model nonlinearities. In general form, the nonlinear land surface model is expressed as:
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X, = fi(x,)+w, 0
where X, is the state vector at time k, and w is the model error with covariance Q -
E[w w'].
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Figure 2: Schematic of the extended Kalman filter
(EKF) and the ensemble Kalman filter (EnKF). The
extended Kalman filter approximates the error
covariance propagation by linearising the land
surface model. The ensemble Kalman filter
nonlinearly propagates an ensemble from which
sample covariances are derived at the update time

Both the extended Kalman filter and the ensemble Kalman filter work sequentially from one
measurement time to the next, applying in turn a forecast step and an update step. Figure 2 illustrates
the difference between the ensemble Kalman filter and the extended Kalman filter. During the

forecast step, the extended Kalman filter propagates a single estimate of the state vector (from x|

to X, ), and integrates the uncertainty (error covariance) (from P, to P, ) of that state, which will

be used in the model forecast at the update step. The ensemble Kalman filter simultaneously
propagates an ensemble of state vectors each state vector representing a particular realization of the
possible model trajectories, and the error covariance is computed from the distribution of the model
states in the ensemble.

Using superscripts — and + to refer to the state estimates, individual ensemble members or
covariances before and after the update step, respectively, the state variables, covariances during
forecast and update steps are expressed as follows:
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During the update step, the observation vector Y is linearly related to the system state vector X
and the state independent terms XS,

Y = H xp + X85+ v,
9)
where vy is the measurement error with covariance R=E[v v'].

During the update step, the extended Kalman filter revises its estimate of the state (from X, (o
X ,:') using the observation and the prognostic state error covariance £, and the state error
covariance is also updated (from P, to P,: ). On the other hand, the ensemble Kalman filter
updates each ensemble members separately, using the observations and the diagnosed state error

covariance P, .

During the update step the Kalman gain weights the observations against the model forecast. Its
weighting is determined by the relative magnitude of model uncertainty with respect to the
observation covariance. The Kalman gain is given by
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K, =P H/[H P H +R]" (10)

If no observations are available at time k we set K,=0. Next, the state estimate by the extended
Kalman filter or each ensemble member by ensemble Kalman filter is updated using a linear
combination of forecast model states and the observations:

Update:

extended Kalman filer: %% = ¥k t Kilyi = Hexy = xk, ] (11)
Pi= B~ Kphl P, (12)

ensemble Kalman filter: xfl‘+ =Xt Kl - Hixi = xs, v ] (13)

It is also important to continuously reevaluate the assumptions and problems that exist in the
modelling and assimilation algorithms, so as to not attribute errors to the incorrect error source. A
few considerations are outlined below.

As illustrated by Hollingsworth ez al. (1986), assumptions on the bias and horizontal correlation
structure of the model and observations can have a significant impact on error estimation. In
practice, data assimilation is often implemented with the assumption that observations and
predictions are unbiased and uncorrelated in space. These assumptions work reasonably well for in
situ observations, but satellite observations are usually biased by use of inaccurate algorithms, and
their errors are usually horizontally correlated because the same sensor is making all the
observations.

In cooperation with the National Aeronautics and Space Administration’s Seasonal-to-
Interannual Prediction Project, we have evaluated the benefits and drawbacks of using a 1-
dimensional (vertical) or a 3-dimensional (vertical and horizontal) Kalman filter. At the horizontal
scale of the Advanced Microwave Sounding Unit (60 kilometres), soil moisture and snow exhibit
little spatial correlation. Further, land surface models have little or no explicit treatment of the
physical processes associated with these horizontal scales. 3-dimensional Kalman filtering is also
much more computationally intensive than 1-dimensional Kalman filtering. However, there is
potential benefit for 3-dimensional assimilation to: (1) extend observations into data-sparse regions,
and (2) be used with higher resolution observations that exhibit more spatial correlation.

The potential benefits and drawbacks of using direct radiance assimilation are also being
explored. Itis possible to design a data assimilation system that assimilates radiances directly, rather
than derived quantities such as retrievals, by including a forward model in the assimilation. Such a
system is under development in our effort to derive soil moisture from the Tropical Rainfall
Measuring Mission’s Microwave Imager (TRMM-TMI), and may allow for more precise
identification of calibration problems in the Advanced Microwave Sounding Unit.

3. Streamflow assimilation

While altimetry data could be used to provide additional observation of streamflow
where the rivers are sufficiently wide (greater than 250 metres) and a stage discharge
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relationship is available, altimetry data is most likely to be used to update lake/reservoir
storage. In this situation we can assimilate the lake/reservoir level and hence storage.
This approach requires the existence of volume-elevation relationships depending on the
bathymetry of the water body.

The first key to the implementation of a successful streamflow assimilation scheme for
correction of the land surface states with the Kalman filter is the adequate specification of the model
land surface state error covariance matrix. The important factor is that the model system state error
covariance matrix correctly identifies the cross correlation between the soil moisture and snow
prognostic variables. Likewise, successful runoff assimilation with the Kalman filter for correction
of the runoff forecasts upstream of the streamflow gauging station will depend on adequate
specification of the model runoff error covariance matrix. However, the model runoff error
covariance matrix is not required for updating the model land surface states.

The variance of the observations can be identified reliably in most cases, since it depends on the
characteristics of the measuring device (Georgakakos and Smith, 1990). Observation error estimates
are not available with the streamflow data, but with knowledge of the gauging station
instrumentation, these error estimates may be readily obtained.

The second key to implementation of a successful streamflow assimilation scheme for the
correction of the land surface states with the Kalman filter is the adequate specification of the
observation equation. Since runoff is a land surface model flux, the relationship between this flux
and the model states, such as soil moisture and snow, must be established. The difficulty with this
approach is the time lag between runoff from the source and runoff observed at the gauging station.
Hence, this will be the single most difficult component of the runoff assimilation scheme. To ensure
that observations are related back to the correct time for each land surface states may require
continuous or near-continuous assimilation of runoff data and identification of the time lags
associated with the runoff from each catchment.

An effective evaluation of any large-scale modelling endeavour is the most difficult and yet
most important aspect. We evaluate the assimilation of runoff data through comparison of model
derived surface soil moisture and snow states with remotely sensed surface soil moisture and snow
observations. The experimental design involves synthetic studies where model output of soil
moisture, snow, and runoff is used for the observation and evaluation data, followed by experiments
where these fields are replaced by actual observations. The initial studies are for an individual
catchment where runoff at the catchment outlet will be assimilated to correct soil moisture and snow
forecasts, evaluating the within-catchment flow routing component. This is followed by the
assimilation of runoff for a small number of catchments without any reservoir storage to evaluate the
assimilation scheme when the between-catchment routing is included. The final stage is to evaluate
the assimilation when there is a reservoir (or reservoirs) included in the runoff network.

4. Soil moisture assimilation

A Kalman filter soil moisture assimilation strategy has been developed (Walker and Houser, 2001).
The principal advantage of this approach is that the Kalman filter provides a framework within
which the entire system is modified, with covariances representing the reliability of the observations
and model prediction. We have used a one-dimensional Kalman filter for updating the soil moisture
prognostic variables of the Koster et al. (2000) catchment-based land surface model. A one-
dimensional Kalman-filter was used because of its computational efficiency and the fact that
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horizontal correlations between soil moisture prognostic variables of adjacent catchments at the
scales of interest to climate modelling are likely only through the large-scale correlation of
atmospheric forcing. Moreover, all calculations for soil moisture in the catchment-based land surface
model are performed independent of the soil moisture in adjacent catchments.

Forecasting of the soil moisture covariance matrix using Kalman filter theory requires a linear
forecast model. However, forecasting of the soil moisture prognostic variables (surface excess, root
zone excess and catchment deficit) in the catchment-based land surface model is non-linear. Hence,
forecasting of the soil moisture prognostic variables covariance matrix was achieved through
linearization of the soil moisture forecasting equations. The linearization was performed by a first
order Taylor series expansion of the non-linear forecasting equations.

In order to perform an update of the soil moisture prognostic variables with the Kalman filter,
the observations (near-surface soil moisture) must be linearly related to the soil moisture prognostic
variables. In the catchment-based land surface model, the soil moisture prognostic variables are the
surface excess, root zone excess, and catchment deficit, which are related to the observed volumetric
soil moisture of the surface layer through a complicated non-linear function.

A set of numerical experiments have been undertaken for North America to illustrate the
effectiveness of the Kalman filter assimilation scheme in providing a more accurate estimate of the
soil moisture storage throughout the entire soil profile (Figure 3). Moreover, the corresponding
positive influence on the water balance components, namely evapotranspiration and runoff, has been
investigated. In this experiment, atmospheric forcing data and soil and vegetation properties from
the first International Satellite Land-Surface Climatology Project (Sellers et al., 1996) have been
used as model input for the year 1987.

Using the land surface model of Koster et al. (2000), the initial conditions from spin-up, and the
model input data described above, the temporal and spatial variation of soil moisture across North
America was forecast for 1987. The forecasts of near-surface soil moisture were output every 3 days
to represent the near-surface soil moisture measurements from remote sensors. In addition to soil
moisture, the land surface model provided estimates of evapotranspiration and runoff for each of the
catchments. This simulation provided the “true” soil moisture and water balance data for comparison
with degraded simulations. Moreover, it allowed evaluation of the effectiveness of assimilating near-
surface soil moisture data for improving the land surface model forecast of soil moisture and water
budget components, when initialized with poor soil moisture initial conditions. In the degraded
simulation, the initial conditions for the soil moisture prognostic variables from the spin-up were set
to arbitrarily wet values uniformly across all of North America. The land surface model was then
forced with the same atmospheric data as in the “truth” simulation. The wet initial condition causes
over-estimation of evapotranspiration and runoff. The final simulation was to assimilate the near-
surface “observations” from the “truth” simulation into the degraded simulation every 3 days. The
effect of assimilation on the soil moisture forecasts can be seen in Figure 3. These results show that
after only 1 month of assimilation, the “true” soil moisture has been retrieved for the majority of
North America.



Figure 3: Comparison of gravimetric soil moisture on 30 January 1987 in near-surface (top row), root zone
(middle row) and entire profile (bottom row) from: (a; left column) simulation with degraded initial
conditions for soil moisture; (b; middle column) simulation with spin-up initial conditions (“truth”); and (c;
right column) degraded simulation with assimilation of near-surface soil moisture from the “truth”
simulation once every 3 days.

5. Snow assimilation

Snow plays an important role in governing both the global energy and water budgets, due to its high
albedo, thermal properties, and being a medium-term water store. However, the problem of
accurately forecasting snow in regional and global atmospheric and hydrologic models is difficult, as
a result of subgrid-scale variability of snow, and errors in the model forcing data. Hence, any land
surface model snow initialization based on model spin-up will be affected by these errors. By
assimilating snow observation products into the land surface model, a best estimate of snow states
may be obtained and model bias can be corrected. We are implementing a snow assimilation
scheme that optimally merges remotely-sensed snow observations with the catchment-based land
surface model forecast. As a first step, identical twin experiments have been performed to test and
validate a snow data assimilation scheme. Synthetic observations of snow water equivalent are
assimilated and other snow states are subsequently reanalyzed using the updated snow water
equivalent. Preliminary results show good agreement between the assimilation and simulated truth.
Figure 4 shows snapshots of truth, assimilation and forecast results of 24 continuous catchments in
North America on March 16 1987. The assimilation starts from January 1, 1987, with a poor initial
condition that assumes no snow is present anywhere. It produces satisfactory estimates of snow
water equivalent, snow depth and snow temperature, while the model forecast with the same poor
initial condition produces very different states. In the near future, snow water equivalent estimated
from the Scanning Multichannel Microwave Radiometer (SMMR) and the Special Sensor
Microwave/Imager (SSM/I) will be attempted..
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Figure 4. Snapshot of truth, assimilation and forecast (from poor initial condition) on 16
March 1987 from 3-month assimilation starting from 1 January 1987. Top-row: a) to ¢).
Middle row: d) to f). Bottom row: g) to i). Left column: snow water equivalent (millimetres);
Middle column: snow depth (millimetres); Right column: temperature (C).

6. Skin temperature assimilation

The land surface skin temperature state is a principle control on land-atmosphere fluxes of water and
energy, is closely related to soil water states, and is easily observable from space and aircraft infrared
sensors in cloud-free conditions. The usefulness of skin temperature in land data assimilation studies
is limited by its very short memory (on the order of minutes) due to the very small heat storage it
represents. We used the Physical-space Statistical Analysis System (PSAS, Cohn et al., 1998) in a
2.5 degrees longitude by 2.0 degrees latitude global land surface model to assimilate surface skin
temperature observations from International Satellite Cloud Climatology Project (ISCCP). The
Physical-space Statistical Analysis System algorithm obtains the best estimate of the state of the
system by combining observations with the forecast model first guess. The analysis equation, which
encapsulates the Physical-space Statistical Analysis System scheme, is

w'=wl + K(w” - wa) (14)
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The land surface skin temperature state is a principle control on land-atmosphere fluxes of water and
energy, is closely related to soil water states, and is easily observable from space and aircraft infrared
sensors in cloud-free conditions. The usefulness of skin temperature in land data assimilation studies
is limited by its very short memory (on the order of minutes) due to the very small heat storage it
represents. We used the Physical-space Statistical Analysis System (PSAS, Cohn et al., 1998) in a
2.5 degrees longitude by 2.0 degrees latitude global land surface model to assimilate surface skin
temperature observations from International Satellite Cloud Climatology Project (ISCCP). The
Physical-space Statistical Analysis System algorithm obtains the best estimate of the state of the
system by combining observations with the forecast model first guess. The analysis equation, which
encapsulates the Physical-space Statistical Analysis System scheme, is
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6. Skin temperature assimilation

The land surface skin temperature state is a principle control on land-atmosphere fluxes of water and
energy, is closely related to soil water states, and is easily observable from space and aircraft infrared
sensors in cloud-free conditions. The usefulness of skin temperature in land data assimilation studies
is limited by its very short memory (on the order of minutes) due to the very small heat storage it
represents. We used the Physical-space Statistical Analysis System (PSAS, Cohn et al., 1998) in a
2.5 degrees longitude by 2.0 degrees latitude global land surface model to assimilate surface skin
temperature observations from International Satellite Cloud Climatology Project (ISCCP). The
Physical-space Statistical Analysis System algorithm obtains the best estimate of the state of the
system by combining observations with the forecast model first guess. The analysis equation, which
encapsulates the Physical-space Statistical Analysis System scheme, is

w'=wl + K(w” - wa) (14)
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where w* denotes the analyzed field, v/ represents the model forecast first guess field, w” is the
observational field, K are the weights of the analysis, and H is the interpolation operator which maps
model variables into observables. The observed skin temperature minus the forecast first guess skin
temperature values are input to the Physical-space Statistical Analysis System. The Physical-space
Statistical Analysis System retrieves a grid space average analysis increment (6" = K(w’— H w)),
that is mapped into the land surface tile space. The analyzed field is then obtained by adding the tile
space analysis increment to the first guess skin temperature field.

Results showed that simply correcting the land surface modeled skin temperature with the
analysis increment from Equation (14) every 3 hours was insufficient. Since w is biased, the
traditional analysis equation such as (14) produces a biased w* (Dee and da Silva, 1998). Therefore,
a variant of the Dee and da Silva (1998) bias correction scheme was implemented where,

w' = K(w” —Hw' +b”) (15)
w'=w! —b,_ +w (16)
b =b. —y- 6w an

b{ is the updated bias estimate, by.] is the bias estimate based on the previous analysis increment
(6wi.,“) and Sw'' is the analysis increment at time #. This scheme was inadequate because the surface
skin temperature bias acted very quickly. As a result, an incremental bias correction scheme was
introduced, where a bias correction term is added to the skin temperature tendency equation at every
time step to counteract the subsequent forcing of the analyzed skin temperature back to the initial
state. For this scheme, & is computed as in Equation (17) and the bias correction term is calculated
as,

.
5 7

where T = 3 hours is the frequency of the International Satellite Cloud Climatology Project dataset,
i.e., the frequency of assimilation. This scheme effectively removed the time mean bias, but did not
remove the bias in the mean diurnal cycle. To account for this deficiency, we modelled the time-
dependent bias as,

(18)

b ()= (a;cosw,t+b,sinw;r) (19)

4

and estimated the Fourier coefficients
— a4 e
a,=a; - yow'cosw;t (20)
b, =b,—yow'sinw;t @l

We determined that to adequately account for the diurnal bias changes it is necessary to keep diurnal
(0=27/24h) and semi-diurnal (w,=27v12h) harmonics.

The results presented here are based on the evaluation of the discussed techniques for a July
1992 International Satellite Cloud Climatology Project surface skin temperature dataset. The test
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runs (Table 1) include the simulation without assimilation or bias correction (Model), with Physical-
space Statistical Analysis System temperature assimilation (Assimilation I; Equation 14), with bias
correction (Assimilation II; Equations 15-17), with incremental bias correction (Assimilation III;
Equation 18), with diurnal bias correction (Assimilation IV; Equations 19-21) and with semi-diurnal
bias correction (Assimilation V). Figure 5 shows the July 1992 global monthly mean standard
deviations of surface skin temperature between the experiments and the observations. The standard
deviation decreases gradually with each successive improvement to the methodology, and therefore
substantiates the techniques developed. However, the monthly mean standard deviation does not
reveal the more visible impact of the diurnal bias correction on the monthly mean diurnal cycle.

Table 1: Description of experiments.

Experiment |_Desaription

Model No assimilation

Assimilation [ Physical-space Statistical Analysis System assimilation

Assimilation II Physical-space Statistical Analysis System with bias comrection every 3 hours
Assimilation I1I Physical-space Statistical Analysis System with incremental bias correction
Assimilation IV Physical-space Statistical Analysis System with diumal bias correction
Assimilation V Physical-space Statistical Analysis System with semi-diumal bias correction

July 1992 Global Monthly Mean $ tandard
Deviation

L ; | i
|
Modd  Assim| Assim il Assim Il Assim IV AssimV |

Figure 5: The July 1992 global monthly mean standard
deviations of surface skin temperature between the
assimilation experiments and the International Satellite Cloud
Climatology Project observations (see Table 1).

The July 1992 monthly mean diurnal cycle of surface skin temperature over North America for
the International Satellite Cloud Climatology Project observations, Model, Assimilation IV, and
Assimilation V, are presented at the top of Figure 6. The effectiveness of implementing semi-
diurnal bias correction is shown by how closely Assimilation V matches the observations. Two-
metre temperature (middle) and specific humidity (bottom), also displayed in Figure 6, reveal that
the inclusion of the bias correction scheme also impacts the surface meteorology fields. Thus, for a
decrease in surface skin temperature, due to the bias correction, there is a corresponding decrease in
the 2 metre temperature and specific humidity. Figure 6 allows only for model intercomparison, and
we are in the process of obtaining a verification dataset.
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Figure 6. The July 1992 monthly mean diurnal
cycle of skin temperature (top), 2 m temperature
(middle) and 2 m specific humidity (bottom)
over North America for the observations (light
solid), Model (heavy solid), Assimilation 111
(dashed) and Assimilation V (dotted).

Similarly, the same corrective effect is visible in the Western Europe surface skin temperature
for Assimilation V. The sensible heat flux and latent heat flux also show that the bias correction
technique has a substantial impact on the energy budget, where the reduction in skin temperature
causes a decrease in the sensible and latent heat flux.

In this study, the Mosaic land model (Koster and Suarez, 1992, 1996) has been forced with near
surface atmospheric conditions derived by the Goddard Earth Observing System Data Assimilation
System (GEOS-DAS). The Physical-space Statistical Analysis System was used with the Mosaic
land model in order to assimilate three hourly International Satellite Cloud Climatology Project
surface skin temperature data. Bias correction techniques were developed, since traditional analysis
with Physical-space Statistical Analysis System of a biased forecast lead to a biased analysis. The
bias correction algorithms that were evaluated included bias correction every 3 hours, incremental
bias correction every time step, and bias correction to the mean diurnal and mean semi-diurnal cycle.
The results for a July 1992 test case have shown that the semi-diurnal bias correction was most
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effective. The monthly mean diurnal cycle from the semi-diurnal bias correction experiment closely
matched the diurnal cycle from the observations. Also, the semi-diurnal bias correction results show
the lowest standard deviation for the global monthly mean between the experiment and the
observations.
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