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Land surface models are usually biased in at least a subset of the simulated variables even after calibration. Bias estimation may therefore be needed for
data assimilation. Here, in situ soil moisture observations in a small agricultural field were merged with Community Land Model (CLM2.0) simulations
using different algorithms for state and bias estimation with and without bias correction feedback.

1. INTRODUCTION

2. STATE AND BIAS ESTIMATION

Simple state updating with the conventional ensemble Kalman filter (EnKF) allows for some implicit bias correction. It is possible to estimate the soil
moisture bias explicitly and derive superior soil moisture estimates with a generalized EnKF that uses a simple persistence model for the bias and assumes
that the a priori bias error covariance is proportional to the a priori state error covariance. Significant improvements, however, are limited to layers for
which observations are available. Therefore, it is crucial to measure the state variables of interest. The best variant for state and bias estimation depends on
the nature of the model bias. In a biased model, low errors in soil moisture estimates may require large and frequent increments which in turn negatively
impact the water balance and output fluxes.

5. CONCLUSION

ENSEMBLE KALMAN FILTERING OF SOIL MOISTURE OBSERVATIONS WITH MODEL BIAS CORRECTION

Friedland (1969) proposed a method to estimate both the state and the bias through Kalman filtering by applying 2 filters:
1. a regular Kalman filter for the update of the biased state;

each ensemble of model forecasts was updated to get a bias-blind analysis estimate (1)
with the Kalman gain for state estimation (2)

2. a second Kalman filter to estimate the bias.
the bias (no ensembles) was updated by (3)
with a Kalman gain for bias estimation (4)

The bias estimate can be used to ,
but the .

All P-matrices are referring to error covariance matrices of either the state estimation error (        ) or the bias estimation error (        ).

(5)
(without bias correction)

correct the biased-blind model state estimates
bias-bind state estimate is fed back into the model

for output

If the error in the model formulation is biased (non-zero mean), then the truth and the model forecasts may be expressed as follows:

In this case the model             generates a biased a priori state estimate
he bias vector is given by       and propagated by the

bias model            .

Through assimilation of observations the model results can be updated. The observations are related to the state by the operator       and are
assumed to be prone to random error       :

, i.e. soil moisture and temperature at 10 soil layers and vegetation water
and temperature. The meteorological forcings are given by     . The random noise is           . T

For a linear model, the mean a priori estimation error of the forecast is now equal to the bias, that is                                .
For this poster, the bias was simply propagated as:

Alternative methods

For the states, the bias-corrected estimates (if available) are generally of most interest.
For the step, it is not clear whether feeding back bias-blind, bias-corrected, or fully biased estimates is most beneficial.

The table 1 and figure 1 illustrate several possible methods to correct the model state and/or the resulting output.

output
model re-initialization

Table 1 : Methods for state and/or bias estimation

Figure 1 : Methods for state and/or bias estimation

3. DATA AND MODEL
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- BARC-ARS (USDA)
- Agricultural corn field
- Greenbelt, MD, USA
- 21 ha, 4 sub watersheds, drains in a first order stream

- 36 working capacitance probes during May 2001- May 2002
- H-probes: sensors at 10, 30 and 80 cm depth
- L- and M-probes: sensors at 10, 30, 50, 120, 150, 180 cm depth
- L-probes: additional sensor at 80 cm

- Community Land Model v2.0
- Simulates water and heat fluxes for individual soil profiles
- Monte Carlo optimization of initial states and parameters
- Uncertainty simulated by ensembles (patches per grid cell)
- Ensemble mean = control run

4. RESULT

Figure 2 : OPE3 field with location of soil moisture probes and
meteorological towers.

Figure 3 : Structure for CLM2.0 simulations.

Figure 6 : Soil moisture at 80 cm
for probe Dl4 for different
estimation algorithms. Shown
are (gray) observations, (dotted)
e n s e m b l e m e a n w i t h o u t
filtering, and (black solid line)
filtering runs. The assimilation
was weekly (arrows) and

.
only at

80 cm

Table 2 : Area-average states and total fluxes (2 October 2001 – 30 April 2002) for 2-weekly
, plus/minus one (spatial) standard deviation. Per column, the two listed algorithms yield the

same output for all variables except for soil moisture and for the increment. EnCtrl stands for the control, i.e .the
ensemble mean run without filtering.

assimilation of complete
observed profiles

Friedland, B., Treatment of bias in recursive filtering, IEEE Transactions on 13 Automatic Control , AC-14 , 359–367, 1969.

Superscript + means that the bias estimate is added to the output state.

EnKF

EnBKF_1

EnBKF_2

EnBKF_3

EnBKF_0

conventional state updating without explicit bias estimation

separate state and bias estimation of Friedland (1969)

partial feedback of bias correction on the analysis through

bias-corrected innovations

complete feedback of the bias corrections on the analysis

bias estimation without state update

Figure 5 : (Bottom) Normalized
RMSE different

algorithms with 7 different
assimilation frequencies per
algorithm: every day, 2 days, 4
days, week, 2 weeks, 4 weeks
and 8 weeks. The assimilation
depth was .

single layer

only at 80 cm

Figure 4 : (Top) , area-average, normalized
RMSE for different algorithms with weekly assimilation at 7
different depths (10, 30, 50, 80, 120, 150 or 180 cm) per algorithm.
Normalization of RMSE is with respect to the control run.
Averages were calculated over all layers and all L-probes. One
spatial standard deviation is also shown.

Profile-integrated

- The performance for the
was greatly improved relative to the control

run through inclusion of bias estimation (
), even though the

improvement was modest ( )
Problem in observability of the bias system

- Assimilation of complete profile had little
effect on and , but large
impact on ( )

Upper layers simulated already well in the
control run
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table 2

assimilation layer
itself

profile-average performance

evapotranspiration runoff
subsurface drainage

EnKF

EnBKF_0

EnBKF_1

EnBKF_3

EnBKF_2

(1)

(2)

(3)

(4)

(5)


