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[1] Accurate energy and water storage initialization is critical for skillful land surface
model prediction. A properly initialized model has equilibrium land surface states via
spin‐up runs. The present study investigated aspects of spin‐up runs for the Noah Land
Surface Model (LSM) at point stations using the 1 km grid of the Land Information
System. The model is run repeatedly through a single year until a predefined equilibrium is
achieved. Nine different model initialization methods were tested and compared in these
spin‐up runs at twelve southern Great Plains surface observation stations in the
Midwestern United States. Soil moisture is used as the primary land surface state to
evaluate the spin‐up initializations. The model outputs are compared to evaluate the
discrepancies over the annual cycle of repeated runs to learn how the model attains
equilibrium land surface states. The results indicate that the climatological average state
does not necessarily return the most efficient LSM initialization. Among the various
tested methods, the spin‐up runs initialized with the spatially heterogeneous states
averaged over a short period are found to perform better than others. Heterogeneous land
surface conditions are also found to play a vital role in the spin‐up response. More stable
land surface states are obtained through longer spin‐up runs, which also produce more
similar coefficient of variance, suggesting that the longer spin‐up runs could yield
similar heterogeneous fluxes irrespective of the initialization method. Comparing the
results from different methods, a computationally economic technique for the single‐year
spin‐up is proposed.
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1. Introduction

[2] The exchange of heat, moisture, and momentum
between the land surface and the atmosphere is highly
dependent on land surface processes. Variations in surface
characteristics (e.g., topography, vegetation, soil, etc.) in a
chosen modeling domain are often large, which make
accurate land surface process modeling a challenging task.
The philosophy of testing land surface models by forcing
them with observed meteorological data, and then compar-
ing the fluxes generated by the models with observations,
has been practiced by many validation and intercomparison
studies; for example, phase 2 of the Program for Intercom-
parison of Land surface Parameterization Schemes (PILPS)
[Henderson‐Sellers et al., 1993, 1995]. However, the pro-
blems in the process of a model adjustment to forcing fields
(i.e., model spin‐up) may invalidate such a test [Robock
et al., 1995; Koster et al., 2004]. Owing to the persistence
and memory of a land surface model’s state, it requires
proper initialization to provide a skillful simulation of land

surface fluxes and avoid erroneous interpretation of the
model results. The spin‐up problem can severely bias land
surface simulations, and if not properly recognized, could
potentially invite erroneous understanding of the land surface
processes and degrade the value of initiation fields in cou-
pled land‐atmosphere modeling, therefore compromising
associated weather and climate simulation skill. It has been
shown that subsequent validation results are largely affected
by the methods chosen to initialize a land surface model. The
role of model initialization is critical in the prediction of land
surface conditions that retain the memory of the land surface
state for a considerably long period.
[3] There is neither a standard choice nor any scientifi-

cally established optimal technique for spinning up a land
surface model. Yang et al. [1995] found that most land
surface schemes require many years to come to thermal and
hydrologic equilibrium with the forcing meteorology; the
time needed depends on the total moisture‐holding capacity
and the moisture store initialization. Cosgrove et al. [2003]
compared the behavior of several LSMs and found that the
spin‐up times showed a large spatial variation. The spin‐up
times were correlated most strongly with precipitation and
temperature. Rodell et al. [2005] compared ten methods for
initializing a land surface model and concluded that when
multiple years of forcing data are not available, one of the
best approaches is to use climatological average states
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derived from the same model for the time of year of ini-
tialization. de Goncalves et al. [2006] evaluated spin‐up
characteristics of the Simplified SiB (SSiB) model [Xue
et al., 1991, 1996] in the climate of South America and
reported regional dependency of spin‐up time on precipi-
tation regime. Spin‐up times in the study of de Goncalves
et al. [2006] are noticeably less than those found by
Cosgrove et al. [2003] which the authors have argued is
related to the more abundant precipitation and denser
vegetation cover.
[4] One of the most commonly employed methods for

LSM initialization is to start from an initial guess or obser-
vation. Use of synthetic data is another widely employed
method, which is often obtained from a long‐term simulation
of the same or different model. The primary objective of the
synthetic run is to obtain bias‐free land surface states suitable
for model initialization. However, it increases the depen-
dency of the spin‐up experiments on the choice of synthetic
model set up. Other widely used methods for initializing a
LSM are generally based on blind guesses. In this study, we
use the conventional blind guess and in situ observation for
model initialization assuming that the observed data should
provide better land surface initialization than synthetically
prepared data from a predefined set of model runs. The
motivating factor of the study is to investigate how the spin‐
up results are affected when a LSM is run at a point station
using a set of well‐observed high‐resolution in situ data.
Considering that the land surface spatial heterogeneity
plays a vital role in the LSM initialization, this study also
investigates how the model initialization responds to the
land surface heterogeneity.
[5] This study evaluates the spin‐up characteristics of the

Noah land surface model at point stations using the 1 km grid
of the LIS. The stations are located at the Atmospheric

Radiation Measurement (ARM) site in the southern Great
Plains (SGP) of the Midwestern United States (see Figure 1).
The simulations are confined to running over a single year
repeatedly. Looping over a single year or a fixed period is the
most commonly employed method to spin‐up a model,
particularly if the available data is limited (as in this study),
which is collected during an enhanced observation period
(details on the data are in section 3).

2. LIS Noah Model

[6] The LIS provides a comprehensive software frame-
work to integrate a various community of land surface
models, observations and the necessary computing infra-
structure [Kumar et al., 2006, 2008]. The LIS architecture is
designed to allow interoperability of land surface models,
meteorological inputs, land surface parameters and obser-
vational data. It can plug‐in various land surface models
such as the Noah LSM, Community Land Model (CLM),
Variable Infiltration Capacity (VIC) and Catchment LSM.
The LIS enables running models on points, regions or the
globe at a range of spatial resolutions (2.5 degree to 1 km).
The LIS is also compliant with the Earth System Modeling
Framework (ESMF; see Hill et al., 2004] and Assistance for
Land Surface Modeling Activities (ALMA) (see “The
ALMA data exchange convention,” available at http://web.
lmd.jussieu.fr/∼polcher/ALMA/) standards. With this flexi-
bility, the LIS allows for testing of a variety of configura-
tions with multiple land surface models and compares the
impacts of the choice of models and data sets [e.g., Kato et
al., 2007]. With the opportunity of testing land surface
models in various ways, the LIS helps improve our under-
standing on the land surface processes.

Figure 1. Map and location of stations.
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[7] The Noah LSM [Chen et al., 1996; Koren et al., 1999]
evolved in a series of modeling experiments conducted to
simulate land surface process since the early 1990s. Recent
versions of the Noah LSM is the result of broad partnership
among the Office of Hydrological Development (OHD) of
the National Weather Service, National Environmental
Satellite Data and Information Service (NESDIS), National
Aeronautics and Space Administration (NASA), National
Center for Atmospheric Research (NCAR), the U.S. Air
Force, Oregon State University (OSU) and other universi-
ties. The Noah LSM has been widely involved in studies
coupling LSM with atmospheric models and many other
experimental and operational simulations. For example, the
National Oceanic and Atmospheric Administration‐National
Center for Environmental Prediction (NOAA‐NCEP) exe-
cutes the Noah LSM as the land component in their climate
models. Ek et al. [2003] gives a brief review of the evolution
of Noah LSM and its broad partnership among various
participating organizations.
[8] The Noah LSM is a 1‐D column model that can be

used in either coupled or uncoupled mode. This model uses
longwave radiation, shortwave radiation, precipitation, sur-
face wind, and humidity as the forcing input to simulate soil
moisture (both liquid and frozen), soil temperature, skin
temperature, snow depth, snow water equivalent, canopy
water content and land surface energy and water fluxes. The
governing equations of the physical processes of the soil‐
vegetation‐snowpack medium in the Noah LSM are inte-
grated by the finite difference spatial discretization methods
and a Crank‐Nicholson time‐integration scheme. This
model continues to benefit from a steady progression of
improvements in performance, both in an offline mode (that
is, atmospheric‐forced LSM‐only runs for specific sites or in
two‐dimensional horizontal land surface domains), as well
as coupled in fully three‐dimensional operational mesoscale
analysis and forecast systems [Betts et al., 1996; Ek et al.,
2003]. (See Table 1.)

3. SGP ARM Data

[9] Data used for forcing the model and comparison with
the spin‐up states were obtained from the SGP ARM surface
observation stations. The data observation stations in the
SGP ARM site are equipped with a large existing network
of weather and climate research and instrumentation. The
instruments are configured for automatic data collection and
the data is archived on the site data system. The SGP ARM
site is located in relatively homogeneous geography but has a
wide variability of climate and surface flux properties with
large seasonal variation in temperature and specific humid-
ity. This makes the site data sets ideal for testing land surface
models and sufficient to resolve land surface interaction.

[10] The SGP ARM observation stations are included in
the Coordinated Enhanced Observation Period (CEOP) ref-
erence data set. CEOP requires each reference site to
undertake a quality check to ensure high‐quality control. The
data collected during CEOP Enhanced Observation Period
(EOP)‐3 (1 October 2002 through 30 September 2003) and
CEOP EOP‐4 (1 October 2003 through 30 December 2004)
are available from CEOP Data Archive (CDA) in the form of
30 min resolution composite data that are organized into four
different components (1) surface meteorological and radia-
tion, (2) fluxes, (3) soil temperature and soil moisture, and
(4) meteorological observations. The data sets also contain
quality‐control information, which can be used to mask out
any suspicious or bad observations. The forcing inputs of the
SGP ARM region (e.g., precipitation, surface air tempera-
ture, downward solar and longwave radiation, surface wind
and relative humidity, etc.) are used to resolve the land
surface interaction at the stations.
[11] The CDA does not implement or provide a gap‐fill-

ing procedure. The gaps in SGP ARM data are very few,
however, they might interrupt running the LSM smoothly.
In order to avoid possible interruptions owing to missing
data, the gaps in the forcing input are filled by interpolation.

4. Experiment Design and Configuration

[12] Several research questions motivate the experimental
design. The first is to investigate whether the LSM spin‐up
period could be universal regardless of the variables we
consider. Defining homogeneous initial states may be a
good way to start, but there may be better LSM initialization
methods. Is there a way to incorporate the spatial and
temporal heterogeneity into the initialization? Are mean
states for the given time of year appropriate for initialization
or does the LSM respond indifferently throughout a year?
Can we use a coarser resolution data, averaged over a larger
domain for efficient initialization or do we need to have data
from each station separately?
[13] Soil moisture is an essential initial condition for the

Noah LSM. Other variables used to initialize the model are
soil temperature, canopy water content, snow depth and
water‐equivalent snow depth. Among these initialization
variables, the soil moisture fluctuation is relatively slower
and exhibits consistent response to the dynamics of water
and energy balance than others. Also, the subsurface soil
layers holding the moisture respond slower to the changes of
other land surface states causing a longer spin‐up period.
So, the soil moisture state is used as a surrogate variable for
LSM initialization to test the spin‐up performance.
[14] The experiment consisted of 108 simulations in 12

different stations, which were performed with identical
specifications except the initialization method. Each model
spin‐up simulation is set by forcing the model with a year of
data and a default set of initialized states. The model is
repeatedly run for 7 years by restarting the states simulated
in the previous year. This choice is preferable when long‐
term forcing data are not available for spin‐up as it allows
having spin‐up runs for several years via looping a single
year until the desired equilibrium level is achieved.
[15] The heat flux and soil moisture values simulated from

the land surface model are used to compare the results. The
results are analyzed by comparing the land surface fluxes

Table 1. Specifications of the LIS‐Noah Model

Parameter Value

Spatial resolution 0.01° × 0.01°
Model time step 15 min
Model output time step 30 min
Time period 2003–2004
Forcing source SGP‐ARM in situ observation
Soil layers 10, 30, 60, and 100 mm
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obtained in repeated simulations looped on an annual basis.
The results are analyzed in two ways to understand (1) the
sensitivity of different land surface fluxes to the spin‐up test,
and (2) the sensitivity of different initialization methods. By
doing this, the analysis attempts to understand the control-
ling factors in land surface model spin‐up. (See Table 2.)
[16] The different initialization methods are based on how

the soil water contents are varied in the initialization. In all
spin‐up simulations, the soil temperatures were set to 290 K,
and all other state fields (i.e., canopy water content, snow
depth and water‐equivalent snow depth) were initialized to
zero. These settings limit the study to the sensitivity of
initial soil moisture state and keeping other initial land
variables constant. While involving more than one land
variables in the spin‐up evaluation is an option to investi-
gate whether sensitivity of multiple land variables may
provide a further enhanced spin‐up performance, the option
is not carried out in this study. Since the soil moisture acts as
a surrogate to other land variables and the other initialization
variables have shorter memory compared to the soil mois-
ture, it is likely that the improvement involving sensitivity of
more land variable is insignificant. All together nine dif-
ferent methods of initialization are used in the Noah land
surface model, which is described below.
[17] Method A, dry start: Soil water content in all four

layers was set equal to 10% of saturation. This technique
would be suitable if the main factor controlling spin‐up time
was drying of the soil to equilibrium conditions.
[18] Method B, wet start: Soil water content in all four

layers was set equal to 70% of saturation. This technique
would be suitable if the main factor controlling spin‐up time
was wetting of the soil to equilibrium conditions.
[19] Method C, averagemoisture start: Soil water content in

all four layers was set equal to 30% of saturation (an average
value). This is a commonly used method to initialize an LSM
when other options are not feasible.
[20] Method D, direct observation insertion: Soil water

content in all four layers was set equal to the observed
saturation at the time of initialization. This technique would
be suitable if the main factor controlling spin‐up time was
specifying the actual observed soil moisture to obtain
equilibrium conditions.
[21] Method E, direct station averaged observation inser-

tion: Soil water content in all four layers was set equal to the
spatially averaged saturation at the time of initialization.
This technique would be suitable if the main factor con-
trolling spin‐up time was the average soil moisture state of a

region. This technique would also be suitable to control the
spin‐up effect of observational error in nearby stations.
[22] Method F, direct annual average insertion: Soil water

content in all four layers was set equal to annual average
saturation at the respective station. This technique would be
suitable if the main factor controlling spin‐up time was the
climatology or long‐term average data.
[23] Method G, direct annual station average insertion:

Soil water content in all four layers was set equal to annual
average saturation at all the stations considered in the
experiment. This technique would be suitable if the main
factor controlling spin‐up time was the climatology or long‐
term average data of the region. This technique would also
be suitable to control the spin‐up effect coming from the
possible observational error in a few stations.
[24] Method H, direct monthly average insertion: Soil

water content in all four layers was set equal to monthly
averaged saturation at the month of initialization. This
technique would be suitable if the main factor controlling
spin‐up time was the average monthly soil moisture state of
a region.
[25] Method I, monthly shift of spin‐up start time: In this

experiment, we repeat experiment H but shifting the start of
simulation to one month apart from the previous run. This
technique would be suitable to show the sensitivity of spin‐
up start time and its control on the spin‐up time. This
technique would also be suitable to highlight the seasonal
dependency of the spin‐up experiment.

5. Results and Discussions

[26] The LIS‐Noah model is set up to run offline spin‐up
tests using SGP ARM forcing inputs for 2003 at each station
separately. The first set of spin‐up runs is in cold‐start
mode, running from 1 January 2003 to 31 December 2003.
Then the model is run in restart mode using the land surface
states of 31 December 2003 as the initial condition in the
next run. In order to investigate how land surface variables
perform in the repeated run, the land surface fluxes between
the two runs are compared. This comparison provides a
mean to judge whether the model is spun up or not. The land
surface variables should attempt to achieve an equilibrium
state from the repeated runs. Additional model runs are
repeated to compare the state of the land surface variables
between the successive runs and observe the discrepancy in
the fluxes, which is given by

dY x; t; cð Þ ¼ Y x; t; cð Þ � Y x; t; cþ 1ð Þ ð1Þ

Here dY (x,t,c) is the discrepancy of land surface flux Y at
station x in spin‐up cycle c; Y is a land surface flux being
analyzed such as sensible heat flux (Qh), latent heat flux
(Qle), ground heat flux (Qg) or soil moisture (Sm); t is the
time. The spin cycle c denotes the discrepancy between
current and the next set of model run. If the spin‐up cycle
c = 1 (or 2), it compares the outcomes of simulation set 1
(or 2) and set 2 (or 3). The mean discrepancy is given by

DY x; cð Þ ¼ 1

n

Xn
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dY x; t; cð Þ2

q
ð2Þ

Table 2. Specifications of Experimental Simulations Key Initialization
Techniques

Simulation Specification Technique

A dry: soil at 10% saturation blind guess
B wet: soil at 70% saturation blind guess
C average: soil at 30% saturation blind guess
D direct insertion of observation in situ
E direct insertion of station averaged observation in situ
F direct insertion of annual average at a station in situ
G direct insertion of annual average at all stations in situ
H direct insertion of monthly average in situ
I monthly shift of spin‐up start time in situ
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Here DY (x,c) is the mean discrepancy, which resembles
the root mean square error formulation. It is notable that
the DY (x,c) should reach zero in an idealized spin‐up that
would assure an equilibrium state of the land surface
variable.

5.1. Sensitivity of Land Surface Fluxes to Spin‐Up

[27] Figure 2 shows that the discrepancy dY (x,t,c) looks
like noise in early stages of spin‐up runs. As the model spin‐

up progresses forward, the noise is reduced gradually for
any x. We have noted that the dY (x,t,c) tends to stabilize
after some time. The trend of stabilization is also different
for other land surface variables. For example, the dY (x,t,c)
of Qh and Qle and Qg fluctuates and tends to stabilize from
c = 3 to 4 (see Figure 2), where as dsoilmoisture (x,t,c) does not
fluctuate and tends to stabilize at c = 2. This indicates the
model took several years to reach the equilibrium state and
also hints at how long a model should be allowed to run
before getting close to the equilibrium state. The preferable
spin‐up period may vary depending upon the chosen land
surface flux. In this result, it required more than a 4 year run
time for Qh, Qg and Qle, but soil moisture spin‐up was
nearly stabilized after a 3 year run.
[28] The DY (x,c) plots (Figure 3) show how the spin‐up

runs vary over time and space for different land surface
fluxes. Each trace on the plot (Figure 3) represents the
DY (x,c) calculated for each station from a run using the
same initial condition. The decreasing trend of DY (x,c)
indicates how well the spin‐up runs are performing to bring
the land surface state close to equilibrium. There is large
spatial variation in the DY (x,c) in early cycles (i.e., c = 1).
The higher variance corresponds to the heterogeneity of land
surface conditions among stations. It suggests that using the
same initial condition for different spatial locations is an
inappropriate way to initialize the model. However, the
variance in the DY (x,c) tends to disappear quickly in few
additional cycles of spin‐up runs. This shows the spin‐up
runs are adjusting land surface states rapidly with the local
land surface conditions such that the spatial variation in the
DY (x,c) does not appear in higher c runs despite having a lot
of spatial heterogeneity among the model stations. This kind
of rapid adjustment is expected to occur in the cyclic spin‐up
test where the forcing input patterns are the same for each
cycle. It might be hard to observe such a rapid adjustment in
a continuous spin‐up test that may receive varying forcing
input patterns.
[29] The variance of DY (x,c) for ground heat flux (Qg);

that is, DQg, is found low at c = 1. This indicates that the Qg
is less sensitive to the heterogeneity of initial land surface
conditions and therefore displaying less divergence at lower
c. Also, the variance of DQg (x,c) does not decrease much at
higher c compared to the variance of Qh, Qle and soil
moisture. The decreasing variance of DY (x,c) points out that
land surface states are increasingly moving toward the
equilibrium. This is an indicator of collective spin‐up per-
formance. However, the variance of DY (x,c) may actually
increase, but as long as the overall trend of the discrepancy
stays toward a lower value of DY (x,c), one could still find
that the model was moving toward the equilibrium, up to a
certain point at least. A higher variance of DY(x,c), in such
condition, indicates that the model failed to perform col-
lectively well in moving toward the equilibrium. Therefore,
the high divergence of DQg (x,c) at later spin‐up cycles
(higher c) indicates that the ground heat flux does not adjust
to the land surface condition heterogeneity as quickly as
other land surface fluxes such as Qh, Qle and soil moisture.
This is understood as the long memory effect of ground heat
flux, which needs a longer time to adjust in more hetero-
geneous land surface conditions.

Figure 2. Incremental discrepancy in the land surface
states decreases as the number of spin‐up cycle increases.
The discrepancy represents differences between two consec-
utive annual spin‐up runs.
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5.2. Sensitivity of Different Initializing Methods

[30] Depending upon the methods chosen to initialize the
spin‐up runs, the model test runs produce different out-
comes. We report analysis showing how the soil moisture
states are affected from the methods chosen to initialize the
test runs. The analysis is based on the discrepancy mean and
variance DY (x,c) using the total column soil moisture field
outputs from the test runs.

[31] The results in Figure 4 show that a dry start (method A)
appears to be the worst, as the discrepancy is higher than 5%
after completion of four cycles. The wet start (method B) is
found to be an improper choice but slightly better than the
dry initialization. The average moisture start (method C) is
found to be much better than the dry and wet start. Rodell et
al. [2005] report similar results. Hence, the hypothesis that
an average value is preferable to a wet or dry value seems
to be correct in a range of LSM experiment scales.
[32] Other initialization methods such as the direct

observation insertion (method D), the direct station averaged
observation insertion (method E), the direct annual station
average insertion (method F) have performed poorly than
the average moisture start (method C) in early cycles of the
test runs conducted. These three direct insertion‐based
methods are found better than both dry and wet start
methods but they are not found as good as the average
moisture start method. The direction annual station average
insertion (method G) and the direct monthly average inser-
tion (method H) are found to perform better than the average
moisture start (method C) in the comparison after the first
cycle. Method G is found slightly worse after the second
cycle but overall performance of the methods C, G and H in
the spin‐up test runs is better than others.
[33] The results indicate that the direct observation

insertion (method D) could be risky as it may cause poorer
spin‐up performance if there is flaw in the data observation
system. This method brings the observational uncertainty
into the model initialization. There is also a chance that the
observed state does not resemble the equilibrium model
state because there are numerous other factors and para-
metric controls in the model that would significantly differ
from the real interaction of land surface fluxes at the par-
ticular time of the start of spin‐up. The possible inappro-
priate value inserted from the direct observation may cause
the model take longer to spin‐up. One way of reducing the
observation uncertainty is to average the data over multiple
stations. Model initialization using the averaged observation
(method E) is found to perform consistently better than
method D. This method inserts the mean state field for the
time of the start of spin‐up and does not consider the soil
moisture states over a longer period. The time‐averaged
state, which is obtained from the observed soil moisture at a

Figure 4. Comparison of mean discrepancies in soil mois-
ture field from different initialization methods.

Figure 3. Ensemble plot of decreasing discrepancy in land
surface states with increasing repetition cycle obtained from
method C.

SHRESTHA ET AL.: LAND SURFACE MODEL INITIALIZATION STUDY D19111D19111

6 of 10



station for a longer time period (method F), is found to be
better for initializing the model than method E. Method F
uses the time averaged mean state and therefore sets the
model initialization close to the climatologically represen-
tative state for the particular station.
[34] By assigning the different initialization conditions for

each station taken for the experiment (method F) assures
more heterogeneous initialization than the space‐time mean
state obtained from all the stations (method G). However,
method G is found to perform better than method F. The
discrepancy in the results drops from ∼20% (method F) to
10% (method G) in the first cycle and gets close to equi-
librium rapidly in the successive cycles. Method G is found
to be better than the average start, which was performing
better until this test. The better performance of method G
clearly indicates that model initialization may be improved
by using a spatially and temporally averaged observation
record.
[35] There is large soil moisture space‐time variation over

a year and across the spatial domain. The better results
obtained from method G, which ignores the significance of
spatial and temporal variability, could be revealed as a
constraint in the model spin‐up test that we might under-
stand as if the space‐time variation has an insignificant role
in model initialization. By releasing the constraint and using
a shorter averaging window separately over the stations
(method H), the model initialization performance has further
improved. The improvement in model spin‐up while using
the monthly average observation (method H) indicates that
the use of long‐term averages may not be the most efficient
for model spin‐up. The improved result of method G over
method F could be due to a compensating effect of spatial
averaging which has partially corrected the inappropriate-
ness of the long‐term average state used in the method F.

5.3. Spatial Heterogeneity of Spin‐Up Results

[36] The discrepancies observed in the land surface fluxes
during the spin‐up runs vary from one station to another.
The mean results obtained from several point stations
(Figure 4) display the trend showing how the LSM advances
to equilibrium during the spin‐up runs. The mean result,
however, is derived from several nonuniform results, which
are the outcomes of spatially distributed model runs at

several stations. These spatially distributed model runs
exhibit an interesting phenomenon relating to how the dif-
ferent initialization methods work out the spatial heteroge-
neity in the spin‐up outcomes. It is found that the model
spin‐up tends to build a certain level of heterogeneity as the
spin‐up runs get closer to the equilibrium state and the
initialization methods are sensitive to the process of
acquiring heterogeneous equilibrium state.
[37] Figure 5 compares the coefficient of variation (CV)

of soil moisture discrepancies from different initialization
methods. The coefficient of variation is a dimensionless
simple statistical index based on standard deviation and
mean statistics which measures dispersion of probability
distribution. A lower CV indicates uniform discrepancies
among stations and vice versa. The CV may increase when
the variability of discrepancy increases or the mean dis-
crepancy decreases. Previous analysis has shown the mean
discrepancy decreases continuously in cyclic spin‐up test. If
the decrease were uniform among the stations, the CV
would remain the same. Finding a change in CV is the
consequence of nonuniform decrease of discrepancy re-
sulting from the spatial heterogeneity in the land surface
states.
[38] An example of the dry start (method A) can be taken

to illustrate the interplay of the CV discrepancies and the
spatial heterogeneity, which has yielded CV = 2.1 at cycle 1.
This CV represents a standard deviation that is nearly twice
as large as the mean value of the discrepancies between the
first and second spin‐up year. The CV is increased nearly to
3.5 at cycle 2 while the LSM has attempted to reach closer
to its equilibrium state in the next cycle. There is a decrease
in the mean discrepancy at the next spin‐up cycle, and at the
same time, the LSM has attempted to fit the local land
surface condition, which is not uniform owing to the station
spatial variability. As a result, the standard deviation and
mean values of discrepancies are nonuniform. The resulting
higher values of CV implies that the standard deviation is
not decreasing proportionately to the mean discrepancies,
but trying to fit with the proper pattern of spatial hetero-
geneity as the spin‐up cycles progress. The process of at-
tempting to fit with the spatial heterogeneity as well as
yielding the equilibrium land surface state continues and
after five cycles of spin‐up runs, the dry start (method A)
spin‐up test yields CV close to 2.2.
[39] In the subsequent use of other methods to initialize

the model, the CV fluctuates differently. Figure 5 shows that
method A has comparatively higher CV since the early spin‐
up runs. This is because of the dry start condition, which
causes high soil moisture variation among the stations.
However, method B has a wet start (i.e., saturated soil
condition), which causes a lower variation of soil moisture
in the initial runs. As the spin‐up cycle progresses further,
the LSM gradually adapts to the natural pattern of spatial
heterogeneity and hence the CV increases. The average
moisture start (method C) has a low CV almost equal to the
wet start (method B) in the beginning. This shows that
the LSM did a little adjustment in the moisture level at the
initial spin‐up runs. The CV in method C increased rapidly
until cycle three and then it started to decrease adjusting the
CV close to what other methods had yielded.
[40] The CV of method D is high all the time showing the

role played by the direct insertion of the observation in the

Figure 5. Comparison of CV of discrepancies in soil mois-
ture field from different initialization methods.
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spin‐up runs. There is slight decrease, then an increase and
then again a decrease in the CV as the spin‐up cycle pro-
gresses, which shows how the spin‐up runs have struggled
to align with the natural spatial heterogeneity. Method E has
lower CV in the initial cycles as the result of averaged value
used for direct insertion. The CV is found almost constant
up to cycle three and then has gradually increased as it did
with the method B. Method F also has a lower CV similar to
method C. The CV increased slowly and steadily until cycle
three, and then remained nearly constant. Method G has the
lowest CV in the initial spin‐up cycle, which increased
consistently until the last cycle. Unlike other methods,
method H has an almost constant CV throughout the test
showing that it has been close to the needed level of spatial
heterogeneity since the initial cycle.
[41] From the heterogeneity viewpoint, it is clear that all

methods have struggled to attain the heterogeneity equiva-
lent to the CV of about 2. Most methods took five to six
cycles to achieve the CV of ∼2 except methods D, F, and H.
These three methods took only three cycles to yield the CV
of ∼2. These methods have inserted spatially variable states
for the model initialization, which plays an important role in
the model spin‐up. The methods A, D and H achieve the CV
of ∼2 in the first cycle but methods D and H only achieve
CV of ∼2 in the second cycle. The superiority of method H
in maintaining proper degree of heterogeneity is evident
from the results.

5.4. Starting the Spin‐Up Run in a Different Month

[42] The earlier analysis has shown that the model spin‐up
performance is better when monthly average data are used
for model initialization (method H). Those results were
obtained from the January average, which is the starting
month for all the simulations. Although January is the
starting month of the year, the nature or other physical
processes may not have any particular starting preference. It
is interesting to investigate how the spin‐up response would
differ if the model initializations start at a different time, say,
to start the next month. This set of experiments has inves-
tigated the dependence of spin‐up results starting the model
a month apart. This experiment not only tests the sensitivity

of the monthly data, but it also helps to understand the land
surface dynamics on a monthly or seasonal basis.
[43] The discrepancy plots combined show that the spin‐

up results have a great degree of variation based on the
choice of spin‐up start (see Figure 6). The trend of
decreasing discrepancy is unaffected but the mean values of
discrepancies are not exactly the same. These variations in
the mean discrepancies are solely due to the monthly soil
moisture variation pattern.
[44] Figure 7 shows the monthly fluctuation of the mean

discrepancies and the standard deviation in the first spin‐up
cycle. The mean discrepancies decrease from January to
June and then increase afterward. Summer months are found
to yield lower discrepancies than winter months. The stan-
dard deviation varies likewise.
[45] Figure 8 shows the variation of CV in the different

spin‐up cycles begun at different months. The CV plot
shows that the results are not consistent throughout the spin‐
up runs. The January spin‐up runs do not show the best
result in both mean discrepancies and CV plots. June has a
lower discrepancy and lower CV, showing the higher degree
of uniformity in the discrepancies at the initial spin‐up runs.

Figure 6. Comparison of initialization begun at different
months.

Figure 7. Comparison of mean discrepancy at initial spin‐
up cycle in different months.

Figure 8. Comparison of CV of discrepancy at various
spin‐up cycles started in different months.
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The July and September months have quite stable CVs,
however September has the higher value of mean discrep-
ancy. Viewing the uniform nature of CV plot and lesser
discrepancies, the month of July seems to perform better
than other months to begin the spin‐up runs in this kind of
test. The monthly input used to start the cycles is from the
year studied but not from the monthly climatological
averages. It might make a difference if one had an unusual
monthly season and used that month as the spin‐up initial-
ization data. Since the studied year has no report of unusual
monthly records, it is assumed that the reported results and
analysis should represent the land surface conditions
appropriately.

6. Summary and Conclusion

[46] Accurate initialization of land surface model energy
and water stores is critical for making skillful land surface
predictions. The present study investigated aspects of spin‐
up runs for LIS‐Noah LSM run at point stations using a 1 km
grid setting. The model outputs are compared to evaluate the
discrepancies over the annual cycle of repeated runs to find
out how the model attains an equilibrium state in the land
surface fluxes.
[47] The spin‐up results are closely linked with non-

meteorological controls, metrological controls and the cho-
sen initialization methods. Primary nonmetrological controls
include the type and structure of model and parameters such
as soil depth, soil type, hydrological conductivity, root
depth, degree of wetness, vegetation parameters and addi-
tional model specific parameters. Primary metrological
controls include precipitation, temperature, wind, sunshine
hours and net radiation. All of these variables regulate the
dynamics of the water and energy balance, moisture storage
on layers of soil column and transfer of radiative energy and
are likely to control the spin‐up results significantly.
[48] The experiments conducted here are in a small region

where the spatial regimes of nonmetrological and metro-
logical controls do not differ greatly. Yet, the land variables
at those experimental stations and their spin‐up response are
highly heterogeneous. This manifests the land surface pro-
cess complexities even if a small region is studied with a
high‐resolution model and high‐resolution observations.
The model results are found to accommodate the variability
when sufficient spin‐up is allowed. The study might have
benefited from the repeated use of annual forcing data over
multiple years. If the forcing data is affected by a systematic
multiannual trend (increasing, decreasing, or fluctuating) it
may affect the model and may need a longer spin‐up run.
[49] It is noted that the appropriate spin‐up period can

vary depending upon the chosen land surface states. The
spin‐up response is also found dependent on the land sur-
face spatial heterogeneity. Early termination of spin‐up runs
could fail to adapt with the large land surface spatial var-
iations. The model adjusts land surface states rapidly with
the local land surface conditions but it needs multiple spin‐
up cycles. The fluxes (such as sensible heat or latent heat)
are adjusted faster than the ground heat flux, which retains
memory of the land surface state for considerably longer
periods.
[50] Nine different methods of initializations are evaluated

to investigate how the soil moisture states are affected from

the chosen initialization methods. The results demonstrate
that certain initialization methods are superior. All the spin‐
up methods have used the same approach of looping the
simulation on a single annual forcing cycle. This technique
has a drawback of overlooking annual anomalies in the
meteorological forcing that may accumulate artificial
anomalies in longer runs. However, this is one of the most
commonly used approaches and is most suitable for data
poor spin‐up runs. Moreover, using the same approach is
preferable for sound comparison of the results obtained from
the different initialization methods.
[51] Among the methods chosen to initialize the LSM, the

average moisture start method is found to be surprisingly
better than other blind guess methods such as dry and wet
start. Therefore, it could be a good choice to use the average
initial states and loop through available years of forcing
until a desired equilibrium level is attained. However, this
may be just a coincidence in that particular region where the
expected best initialization is close to the guessed average
value. It is found that inserting the in situ data directly into
the model initialization may not yield better spin‐up results.
In some cases, the direct insertion methods are found
counter‐productive compared to blind guess. The spin‐up
performance can be improved by using the mean state fields.
Use of temporal mean state field is better than the spatial
mean state field for the precise spin‐up start time. However,
a longer temporal mean may not be better for initializing the
model. Among the tested methods, the monthly averaged
mean state performed better than others studied here.
[52] The land surface model has to respond appropriately

with the land surface process spatial heterogeneity. It is
found that the spin‐up process builds up a certain level of
heterogeneity along the process of getting into the equilib-
rium state. The results suggest that using the same initial
condition for different spatial locations is an inappropriate
way to initialize the model. One of the ways to improve the
spin‐up efficiency could be to recognize the heterogeneity
from the model initialization start such that the spin‐up runs
would achieve the desired level of heterogeneity and equi-
librium faster. Use of spatially uniform states to initialize the
model is found inferior despite yielding a lower discrepancy
in the mean results.
[53] As stated above, the monthly averaged mean state

performs better for the model initialization in both measures:
faster to reach the desired level of equilibrium, and faster to
adapt with the desired level of heterogeneity. However,
there is a seasonal effect that could guide the preferred
choice of the month to start the model spin‐up. The land
surface spin‐up runs started in the summer months are found
to have a lesser degree of uncertainty than the winter months
both in the measure of mean and variance of discrepancies.
Among the tested results, June and July are found to be the
best months of the year to begin spin‐up runs. The results
and findings presented here provide important understand-
ing about the factors controlling the spin‐up results and are
likely to benefit in the spin‐up runs of similar land surface
model for the regions having similar hydrometeorological
regime. The effectiveness of the described initialization
methods may be quite different in other regions of different
hydrometeorological regime and in other land surface
models.
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