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[1] An ensemble Kalman filter for state estimation and a bias estimation algorithm were
applied to estimate individual soil moisture profiles in a small corn field with the CLM2.0
model through the assimilation of measurements from capacitance probes. Both without
and with inclusion of bias correction, the effect of the assimilation frequency, the

assimilation depth, and the number of observations assimilated per profile were studied.

Assimilation of complete profiles had the highest impact on deeper soil layers, and the
optimal assimilation frequency was about 1-2 weeks, if bias correction was applied.
The optimal assimilation depth depended on the calibration results. Assimilation in the
surface layer had typically less impact than assimilation in other layers. Through bias
correction the soil moisture estimate greatly improved. In general, the correct propagation
of the innovations for both the bias-blind state and bias filtering from any layer to
other layers was insufficient. The approximate estimation of the a priori (bias) error
covariance and the choice of a zero-initialized persistent bias model made it impossible to
estimate the bias in layers for which no observations were available.
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1. Introduction

[2] The estimation of soil moisture profiles has received
considerable attention, because a correct assessment of the
soil moisture state is crucial to estimate the partitioning of
surface fluxes, for weather predictions and climate analyses
[Dirmeyer, 2000; Koster et al., 2004]. The combination of
observational information with model simulations is gener-
ally accepted to be superior for state reconstruction as
compared to either source of information separately, as
demonstrated by, for example, Reichle and Koster [2005].

[3] In data assimilation studies aiming at the estimation
of soil moisture, different types of soil moisture observa-
tions have been used: synthetic ground data [Walker et al.,
2001a], real ground point measurements [Walker et al.,
2001b; Heathman et al., 2003], synthetic remote sensing
data [Entekhabi et al., 1994; Hoeben and Troch, 2000;
Reichle et al., 2002a] and real remote sensing data
[Galantowicz et al., 1999; Houser et al., 1998; Crosson
et al., 2002; Margulis et al., 2002; Pauwels et al., 2002;
Crow and Wood, 2003]. Also, a wide range of models have
been explored to simulate soil moisture, ranging from
simple Darcy-based vertical profile representations to com-
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plex distributed land surface models, ultimately coupled
with climate models or models for numerical weather
prediction.

[4] Several authors have shown that the errors in model
predictions or in observations (e.g., Ni-Meister et al. [2005]
for remotely sensed observations and model predictions for
soil moisture) may contain systematic components, i.e.,
bias. Reichle et al. [2004] compared three independent
surface soil moisture data sets, and found large discrep-
ancies between them, pointing to the need for bias estima-
tion and correction or rescaling, before the combination of
data and model information in an assimilation procedure.
While proper quality control can reduce bias in observa-
tions, it may be impossible to find a system identification
procedure that is able to yield a model that is never
(temporarily) biased. With shortcomings in the model
structure or parameters, using state estimation only may
not be adequate. Therefore, in several hydrological studies,
the potential of parameter estimation through filtering was
investigated [Hebson and Wood, 1985; Boulet et al., 2002;
Moradkhani et al., 2005; Vrugt et al., 2005], often in
combination with state estimation. However, in case of a
large number of parameters, it may be better advised to
estimate an integrated bias value to correct the model
results. Friedland [1969] developed a method for bias
estimation in a Kalman filter framework. This work was
further explored and applied by Dee and da Silva [1998]
and Dee and Todling [2000].

[s] For state estimation by sequential techniques, simple
methods as well as more advanced filtering techniques have
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been used for data assimilation in hydrological applications.
Houser et al. [1998] indicated that more complex assimila-
tion schemes yielded better results in a 3-D assimilation
study, using real data. Walker et al. [2001a] found that the
(extended) Kalman filter outperformed a simple technique
like direct insertion for profile soil moisture estimation. The
ensemble Kalman filter (ENKF) [Evensen, 2003] was found
to be an effective and efficient tool for state estimation in
nonlinear models, such as demonstrated in synthetical
studies [Reichle et al., 2002a, 2002b; Crow, 2003] and field
studies [Margulis et al., 2002] on higher dimensional
assimilation.

[6] However, Kalman filtering techniques require more
computational effort than simple techniques. Similar to
simpler methods, they rely on a number of assumptions,
such as the correct knowledge of the first- and second-order
statistics of the process and measurement noise, which often
limit their success in real case studies. An additional
challenge for Kalman filters is that the dynamics of these
statistics are to be estimated. Therefore, in many studies,
idealized or simplified conditions were considered. Several
studies have been reported on profile estimation through
Kalman filtering of synthetic ground measurements [Walker
et al., 2001a] or synthetic brightness or backscatter data,
including a more complex observation model [Entekhabi et
al., 1994; Hoeben and Troch, 2000]. These studies are mostly
feasibility studies which circumvent inaccurate knowledge of
error covariance matrices and problems of model or obser-
vation bias. However, with real data, Walker et al. [2001b],
for example, found that difficulties occurred because of the
presence of model bias, and many shortcomings in assimila-
tion results have been found due to incorrect knowledge of
the error covariances. Another simplification is the definition
of'the soil profile: often the vertical variability is integrated in
a few soil layers. This reduces the size of the state and the
state error covariance matrix and prohibits a detailed valida-
tion. Further, in most of the hydrological 3-D studies, the
error covariance matrices have been sparsely filled and
horizontal correlations have been neglected [Reichle and
Koster, 2003], to take advantage of a (block) diagonal
structure for the inverse calculation.

[7] For this study, the ENKF was used with the Commu-
nity Land Model (CLM2.0) to assimilate ground measure-
ments for soil moisture profile estimation. The focus was on
the determination of the best observation conditions for
assimilation and on the optimization of the method with real
data, without an in-depth evaluation of the effect on related
state variables or fluxes, such as evapotranspiration or
runoff, which will be addressed by G. J. M. De Lannoy et
al. (Correcting for forecast bias in soil moisture assimilation
with the ensemble Kalman filter, submitted to Water
Resources Research, 2006, hereinafter referred to as De
Lannoy et al., submitted manuscript, 2006). While the
ENKEF is a very flexible tool for state estimation, several
studies showed that the assumption of Gaussian a priori
state estimates has often been violated. Perturbation of
parameters, forcings and initial states sometimes resulted
in skewed [Reichle et al., 2002a; Crow, 2003] or biased [De
Lannoy et al., 2006a] distributions of the forecasted state
estimates. In this work, the correct specification of the first
and second moments of forecast error will be shown to be
crucial for successful state estimation with an ENKF.
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Several scenarios for state and bias estimation will be
examined for a collection of completely independent sin-
gle-column assimilation problems.

[8] First, the soil moisture data and the land surface
model are discussed in section 2. In section 3, the state
and bias estimation with an ENKF are explained. In
section 4, several assimilation scenarios are analyzed and
the filter performances are discussed in section 5.

2. Data and Model Description
2.1. Data

[9] Soil moisture observations were collected in a 21 ha
corn field on which the Optimizing Production Inputs for
Economic and Environmental Enhancement (OPE3, http://
hydrolab.arsusda.gov/ope3/) project is conducted. This field
is managed by the Beltsville Agricultural Research Center
(BARC) of the Agricultural Research Service (ARS) of the
U.S. Department of Agriculture (USDA). The site is situated
in Prince George’s County, Maryland, and it is part of the
Anacostia watershed. The four subwatersheds within the
field are named A, B, C and D from north to south and in
each subwatershed 12 capacitance probes (EnviroSCAN,
SENTEK Pty Ltd., South Australia) provide soil moisture
data every 10 min. The observations were aggregated into
hourly time steps for comparison with model results.

[10] The probes were named following a 3 digit system.
The first letter represents the name of the subwatershed (A,
B, C, D), the second letter (L, H, M) refers to the estimated
infiltration rate at the point of installation (low, high,
moderate clay content) and the third digit (1, 2, 3, 4)
discerns between the different probes of a specific infiltra-
tion regime [Gish et al., 2002]. H probes have sensors at 10,
30, and 80 cm. L and M probes have sensors at 10, 30, 50,
120, 150, and 180 cm. L probes have an additional sensor at
80 cm depth. In this study, data collected from 1 May 2001
through 30 April 2002 were used. During this period 36 out
of 48 probes were operational. A detailed analysis of the 4-D
soil moisture data set [De Lannoy et al., 2006b] revealed a
complex subsurface hydrology, mainly caused by an irreg-
ular shaped clay layer at 1 to 3 m depth.

[11] The data from 1 May 2001 through 1 October 2001
were used for system identification (parameter and initial
state estimation), while the remaining data from 2 October
2001 through 30 April 2002 served for state estimation and
validation.

[12] The meteorological data required to force the land
surface model include air temperature [K], wind speed [m/s],
specific humidity [kg/kg], incident solar radiation [W/m?]
and total precipitation [mm/s] (other forcings are calculated
by the model itself). Three sources of meteorological data
were used to generate a continuous time series: (1) a 10 m
high USDA meteorological tower in field B, (2) 3.5 m high
meteorological tower of the Powder Mill Soil Climate
Analysis Network (SCAN) just outside field D, and (3) the
3.05 m high tower at the Station 3 Old Beltsville Airport.
The observed forcings were assumed to be spatially uniform
over the relatively small area of the OPE’ field.

2.2. Model Description

[13] The Community Land Model (CLM2.0) simulates
land surface processes by calculating water and heat fluxes
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and states for each grid cell separately, without any inter-
action between cells [Dai et al., 2003]. Each grid cell can be
subdivided into several patches, containing one single land
cover type. Here, each grid cell was completely covered
with vegetation. The vegetated fraction is further subdivided
into patches of plant functional types [Bonan et al., 2002],
which maintain their own prognostic variables. For the
model applications in this study, CLM2.0 was adapted such
that for each grid cell the individual patches served as
ensemble members, i.e., in addition to differences in veg-
etation parameters, also differences in soil parameters and
forcings were included [De Lannoy et al., 2006a].

[14] CLM2.0 has one vegetation layer, a user defined
number (by default 10) of soil layers, and up to 5 snow
layers (depending on the snow depth). For this work, depths
of the different soil nodes were set to 2.5, 5, 10, 20, 30, 50,
80, 120, 150 and 180 cm depth. Model parameters were
obtained from a multiobjective calibration with inclusion of
optimal initial state estimation for soil moisture in the OPE?
field, as discussed by De Lannoy et al. [2006a]. The system
for each profile was identified completely independent of all
other profiles in the field. Deterministic simulations (no
ensembles) with the calibrated model without filtering are
referred to as the control model run.

[15] The model was run with a constant hourly time step
and was set up for the distributed modeling of vertical soil
moisture profiles at 36 points (grid cells, corresponding to
the 36 working probes), with each grid cell containing
64 patches to represent the ensemble members.

3. Filtering Algorithm
3.1. State Estimation (ENKF)

[16] A state vector for 1 profile consists of 22 prognostic
variables, i.e., canopy water storage, vegetation tempera-
ture, and soil temperature and moisture at 10 levels. Since
the presence of snow was negligible and the soil tempera-
ture was only rarely below the freezing point during the
studied period, state variables related to snow and frozen
soil water were excluded. The state variables were taken at
36 points, resulting in a total state vector x; of dimension n =
22 x 36 = 792. However, the total state vector was
subdivided into 22-element states for each individual pro-
file to allow parallelized state updating (see below). The
CLM2.0 represents the system that propagates the state in
time (with discrete time steps i) and is denoted as f;; i,
the discrete nonlinear transition function. The measure-
ments, stored as an m-dimensional vector y;, are linked to
the state by a discrete linear operator, the matrix H;, which
contains only values of 0 and 1, because the observations
used for assimilation were direct measurements of state
variables, i.e., soil moisture. Depending on the number of
observations assimilated at each time step i, the number of
rows in H; varied.

[17] The discrete nonlinear state-space representation of
the system, i.c., the true process model, and the discrete
linear transformation of the state to the observations, i.e.,
the measurement model, are given by

x; =fi (X1, w5, W) + ¢

(1)

Yy, = Hin* +v; (2)
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u, is the vector of meteorological forcings ¢; is a correction
term (generally assumed to be zero) to account for possible
systematic model error in f;; ;, and w; and v, are random
process and measurement noise, respectively. These random
noise vectors are assumed white, zero mean Gaussian and
independent. Q; = E[w,w/] and R; = E[v,v/] are positive
definite covariance matrices describing the process and
measurement noise.

[18] In absence of these sources of noise, the expression
for the system is an ordinary differential equation and x;
would simply be its solution. In the presence of random
noise w;, the probability density function (pdf) of x; gives a
complete statistical description of the state. An ensemble of
forecasts (j = 1,- - -,N) can be generated to obtain an estimate
of the state’s pdf and the best a priori estimate X; of the
state is given by

’:Kj_, =11 <§;§,1 i, Wj,i—l) (3)
. 1 ZN: .
X =— X (4)
1 N /:1 vid

with w;; a realization of the model error, which is imposed
by perturbing forcings, parameters and/or states. The vector
i;i_l is an analysis that may be obtained from updating the
state vector at time / — 1 (see below), or, if no updating was
performed at i-/, then formally i}f,»rl = X;,—1. Note that the
notation for the ensemble mean X; (equation (4)) differs
from that of ensemble members X;; (equation (3)) only in
the omission of the ensemble member subscript j. The ~ is
introduced here to indicate possible bias in the state
estimate, which is not accounted for (bias-blind state
estimate), while in the next section, a bias-corrected state
will be estimated. The corresponding uncertainty is given
by the a priori bias-blind state error covariance P, ;:

which represents the spread in the a priori states as a result
of perturbation of the initial states, parameters and forcings
for the generation of ensemble members.

[19] Kalman filtering is used to correct the a priori state
estimate (forecast) with observations. Each ensemble mem-
ber j is updated individually, and the a posteriori state
estimate (analysis) is obtained as follows:

s
i =Xt

RN

j=1

M
[l
?
=
—
=
|
=
A
[

(6)

(7)

As discussed by Burgers et al. [1998], the observations y;
should be perturbed to assure sufficient spread, i.e. y;;=y; +
v, ;> with v; ; the imposed perturbation. The optimal gain K, ;
is identical for all members and, as in the (extended)
Kalman filter, given by Kalman [1960]:

- - -1
K., =P _H HP_H +R (®)
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Figure 1.

Two-stage state and bias estimation by two parallel Kalman filters. The solid gray box

represents the (land surface) model. All symbols correspond to those in the text.

Analysis values obtained by equation (6) were constrained
to avoid unrealistic analysis values. For example, soil
moisture values above the effective porosity were set back
to the value for the effective porosity.

3.2. Error Covariance Matrices for State Estimation:
P, and R

_[20] To determine the ensemble error covariances in the
P, matrix, the information from 64 (N) member runs has
been used, since for more members no significant
improvement in the correspondence between the ensemble
mean and the control model run was observed, and not
much variability in higher-order ensemble moments was
found with further increased ensemble sizes. The magnitude
of the ensemble perturbation for all initial state variables,
parameters and forcings was identical to that described by
De Lannoy et al. [2006a]. A Gaussian perturbation was
applied to parameters and initial states around the optimal
mean found by calibration, and around the observed values
for the forcings. For perturbed values exceeding some pre-
defined limiting bounds, new values were drawn, because
outlying members may have a strong impact on the empirical
covariances.

[21] The individual grid cells were calibrated indepen-
dently and the perturbation for one grid cell was chosen
independent of that for another grid cell. The latter is a
strong assumption with respect to the forcing errors,
because for the studied 21 ha field the forcing errors are
in reality almost perfectly correlated between (any two)
different grid cells. For CLM2.0, which propagates infor-
mation in the vertical direction only over the profile within
the same grid cell, the a priori state error covariance matrix
(found through the ensemble generation) should essentially
be block diagonal with one block per grid cell: the pertur-
bation for one patch in a grid cell does not affect any patch
in another grid cell. All spurious elements oft the diagonal
blocks in the P, matrix were very low and set to 0. This

allowed for parallel state updating for the different individ-
ual profiles.

[22] The observation error covariance matrix R is deter-
mined by the uncertainty of the measurements. Paltineanu
and Starr [1997] found root-mean-square error (RMSE)
values of 0.009—0.030 cm*/cm® for a nonlinear relationship
between soil moisture content and the scaled frequency as
obtained from capacitance probes. Therefore the uncertainty
was chosen to be 0.0224 cm*/cm’, which is slightly lower
than the upper RMSE value of 0.030 cm®/cm’®. More
specifically, R was set to 0.0005 I, with I the identity matrix,
and assuming zero cross correlation between the observation
errors. This uncertainty of 0.0224 em’/em’® (== 1/0.0005) is
less than the 0.05 cm’/cm® upper limit that Walker and
Houser [2004] found useful for data assimilation.

3.3. Bias Estimation (ENBKF)

[23] Optimal state estimation using a Kalman filter
relies on the assumption of zero mean forecast error, i.e.
E[x; — x; ] = 0, with X; a bias-free a priori state estimate.
De Lannoy et al. [2006a] found that after calibration of the
CLM2.0 for all individual profiles, the forecasted state
estimates X; were biased in some soil layers, mainly for
the deeper profiles. In addition, ensemble generation some-
times caused bias, so that E[x; — X; | = b;. In case of bias,
the state obtained by the procedure in the above section is a
bias-blind analysis, which was denoted by x; . In this study,
the ENKF was extended with the bias estimation algorithm
of Friedland [1969] to calculate the bias-corrected state
estimate X;. Figure 1 illustrates how a bias-blind state
analysis X; and an a posteriori bias estimate b; are calcu-
lated separately by two Kalman filters and combined
afterward.

[24] Within each grid cell, the bias-blind a priori and a
posteriori state estimate are given by equation (4) and (7).
The bias b; consists of a vector of the same dimension as the
state. For this study, it was propagated in time by a
persistence model and it was not perturbed. The a posteriori
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Table 1. Overview of DA Frequencies With Varying Numbers of
Assimilation Events (V) Over a Fixed Time Period, From 2
October 2001 through 19 March 2002

Interval Ness
a 1 day 169
b 2 days 85
c 4 days 43
d 1 week 25
e 2 weeks 13
f 4 weeks 7
g 8 weeks 4

bias estimate, f),+, is found as a linear combination of the a
priori bias estimate, b;, and the difference between the
observations and the a priori bias-corrected ensemble mean
state estimate, X; °~, as follows:

b, :bi+1 (9)
+b; (10)
(11)

=b; +Kply; — Hix; ] (12)

[25] The double superscript — , — is used for an a priori
state estimate which is corrected by an a priori bias estimate.
The weighting factor K, ; is defined by [Friedland, 1969;
Dee and da Silva, 1998]

~ -1
K, = P, H! [HP, H! + HP_H/ + R,} (13)

X0

with P,; the a priori bias error covariance, which was
derived empirically (see below). The resulting bias-cor-
rected a posteriori state estimate X; is given by [Friedland,
1969; Dee and da Silva, 1998]

(14)

[26] The state error covariance for bias-corrected a
posteriori state estimates is Py; = P,; + [I — K, ;H;]P;;
[r— Kx’,»Hi]T. The bias-corrected state estimate is a more
precise estimate than the a posteriori bias-blind state, i.e., its
(ensemble) mean value is closer to the truth. However, since
the bias-blind state is corrected by another random variable,
the bias estimate, the uncertainty for the bias-corrected a
posteriori state estimate is larger, or the accuracy is lower.

3.4. Error Covariances and Gain Factor for Bias
Estimation: P, and K,

[27] If the bias-blind a priori state error covariance f’; ;18
available as the result of an effort to properly estimate it, as
is the case for an ENKF in this study, then the matrix P;; can
be approximated as fraction of P, ; [Dee and da Silva, 1998]:

T p, (15)

P, = T P
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such that the gain for the bias estimation can be found as

Jo Jo —1
Ky = 9P ] [HP_HT + (1 )R,

X, 1 (16)
In this formula for K, ; 7 can take any positive value,
depending on the dynamics of the system and it is not
necessarily restricted to 0 < v <1 as in equation (15). This
parameter could be tuned to optimize the filtering system
[Keppenne et al., 2005]. The larger v, the more the a priori
bias estimate is updated by observational information.
However, for v > 1, the tuning of K}, is entirely empirical,
and because equation (15) is not valid anymore, it becomes
unclear how to assess Py ;. In this study, scenarios with v =
0.5 were tested, without any effort for optimization.

4. Scenario Analysis

[28] CLM2.0 was set up for distributed soil moisture
modeling over 36 profiles (grid cells), but because of our
assumption that observation and model (including forcing)
errors were uncorrelated for any two grid cells, the model
run (and assimilation) for each grid cell was completely
independent of the other grid cells and can be considered as
individual profile simulation. For all profiles, assimilation
of soil moisture observations at varying depths (DA depths =
data assimilation depths) and for varying frequencies (DA
frequencies = data assimilation frequencies) was performed.
Depending on the case study, only assimilation into 1 soil
layer was performed or in all soil layers where observations
were available. The assimilation events were chosen within
a fixed time period from 2 October 2001 through 19 March
2002 with seven different DA frequencies as summarized in
Table 1.

[29] To quantify the assimilation effect, the RMSE for an
individual layer (/), was determined by \/%ZQ (- y,—),z,
with X; and y; respectively the scalar ensémble mean model
output and the observation at the time instant i of soil
moisture in layer /. 7} is the number of time steps for which
data are available in layer / during the validation period
(2 October 2001 through 30 April 2002). For ENBKEF, X; is
replaced by X;. The profile-integrated RMSE was calculated

by +TZ,L:] SH (G- yi)f, with L the number ob-
1

servation of layers for a probe. No weights for layer depths
were included, resulting in relatively more weight to the
(thinner) surface layers.

4.1. Case Study 1 (ENKF)

4.1.1. Assimilation in One Layer

[30] In a first experiment, the state of the soil moisture
profile was estimated by filtering observations in a single
soil layer, without bias correction. The ENKF columns in
Table 2 and Figure 2 show complementary information to
assess the impact of the DA depth on the soil moisture
profile estimate obtained by the ENKF. Table 2 shows, for
24 B and D probes, the RMSE values integrated over the
complete profiles for the control run and the ensemble mean
run without filtering, and differences in profile-integrated
RMSE for the ENKF runs with the ensemble mean without
filtering for all 7 DA depths, for an 8-weekly assimilation
interval. As discussed by De Lannoy et al. [2006a], for
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Table 2. Profile-Integrated RMSE for the Control and Ensemble Mean Run Without Filtering for Selected Probes and Differences
(ENKF - Ens Mean) and (ENBKF - Ens Mean) in Profile-Integrated RMSE for ENKF and ENBKF for 8-weekly Assimilation in Different
Individual DA Depths®

DA Depth, cm
ENKF ENBKF
Probe Control Ens Mean 10 30 50 80 120 150 180 10 30 50 80 120 150 180
BHI1 291 2.35 000 -0.13 — —-0.17 — — — 0.04 -053 — —-029 — — —
BH2 291 2.32 —0.03 0.03 — 0.03 — — — 062 —-0.03 — 0.02 — — —
BH3 2.16 2.70 —0.02 0.0l — 0.00 — — — =032 -0.18 — 0.01 — — —
BH4 3.21 6.92 -143 -031 — =226 — — — =373 —-060 — 273 — — —
BL1 9.03 9.15 038 —-022 -032 —-0.06 0.05 015 0.82 084 —-0.61 —-0.78 —0.16 004 —1008.15 2.27
BL2 8.81 9.11 -0.23 -0.03 020 -070 -0.13 —-191 -1.08 -035 -0.04 033 —-1.00 —-0.19 —1.71 —0.90
BL3 6.60 6.36 0.02 0.13 006 0.00 007 042 029 0.03 0.19 0.07 0.02 0.06 0.44 1.02
BL4 6.06 5.92 0.00 —0.01 -0.18 —0.04 -0.83 —-0.36 -0.65 0.11 0.00 —0.28 —0.51 —2.88 -0.79 —1.51
BMI 4.46 4.57 -0.02 -0.01 -0.08 — —-0.02 008 -0.50 027 -0.17 -0.17 — 0.00 0.09 —0.81
BM2 9.01 10.97 —-0.10 0.01 -0.55 — 0.16 —040 -021 -0.72 -0.07 —-1.05 — 0.00 —-0.74 =511
BM3 4.75 4.24 -0.11 —-0.02 -0.06 — 0.04 —0.34 -064 -0.05 -0.02 -0.10 — 0.04 —0.58 —1.03
BM4 6.55 7.20 0.0l -094 -102 — -057 -—-1.01 -1.8 002 -134 —-140 — —0.55 —1.28 —2.91
DHI 2.41 3.14 —-0.19  0.07 —  —044 — — — —0.18 0.08 —  —140 — — —
DH2 2.42 2.74 -020 -004 — 019 — — — —-046 -0.17 — —-028 — — —
DH3 2.62 6.30 -0.55 -054 — -037 — — — =318 —-184 — -1.07 — — —
DH4 4.36 4.07 —-0.10 —-041 — 0.07 — — — =034 —-165 — 0.15 — — —
DL1 2.86 5.05 —-046 -0.88 —-0.99 —-041 -0.18 0.05 —-0.64 —1.14 —-2.01 -2.56 —-0.77 —-0.24 0.11 —1.20
DL2 5.16 5.95 -0.15 -0.04 -0.02 -034 -0.03 0.16 -—-0.11 -0.60 —0.07 —0.05 -—-2.43 0.0l 0.23 —0.23
DL3 9.86 10.83 —-0.05 033 055 —-153 —-0.70 —-148 —-090 -026 024 059 —-254 -0.75 —3.41 —1.43
DL4 9.29 11.64 -0.17 -031 -130 -1.00 -1.78 -133 -1.73 -0.17 —-0.50 -2.07 —1.58 -5.14 225 —3.09
DM1 3.84 9.14 -0.06 -0.59 -154 — -3.06 —-0.60 —-0.29 -0.15 —-092 -2.15 — —422 —-0.97 —-0.51
DM2 5.25 6.34 031 —0.14 -041 — =004 0.03 004 -0.66 —0.07 0.09 — =009 —0.04 0.00
DM3 5.19 6.07 —-0.05 0.02 037 — —-040 -030 -0.24 -0.08 0.03 -004 — —-079 —-037 044
DM4 8.28 9.53 009 -035 -047 — -056 —-0.63 -0.58 0.16 -046 —-1.01 — —060 —0.88 —2.94
“Values are in vol%. Control indicates the control run; Ens Mean indicates ensemble mean without filtering. Dashes indicate no possibility for
assimilation at the given depth.
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Figure 2. Mean relative values for the profile-integrated RMSE as function of the DA depth for
3 different DA frequencies (variable amount of observations) and per probe type for (left) ENKF and

(right) ENBKF.
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some probes a lower performance was found for the
ensemble mean without filtering than for the control run.
This is also why the performance after filtering was some-
times less than the control run. However, for most probes
the RMSE for the ENKF run was lower than for the
ensemble mean without filtering.

[31] The influence of the DA depth on the profile-
integrated RMSE is summarized in Figures 2 for 3 different
DA frequencies (the results for an 8-weekly DA frequency
contain those in Table 2). For assimilation at each individ-
ual DA depth, the profile-integrated RMSE for each of the
36 single profiles was determined. Per profile, the lowest
RMSE, i.e., RMSE,,;, found for assimilation at the most
successful DA depth and the highest profile-integrated
RMSE, i.e. RMSE,,.x were sought. The profile-integrated

RMSE obtained by assimilation at each DA depth was

linearly rescaled by m. The (spatial) average

and standard deviation of the rescaled RMSE values over all
profiles were then plotted as function of the DA depth. This
rescaling was performed to understand the relative impact
of filtering at different DA depths per probe, without com-
parison to any reference run and to weight the contribution
of each profile equally in the spatial mean.

[32] Figure 2 then shows that it was best to assimilate soil
moisture at 80 cm depth to improve the complete soil
moisture profile estimate for L probes and at 180 cm for
M probes. For H probes, it was not clear for which DA
depth the RMSE was lowest. Assimilation at 10 cm, which
is closest to a surrogate for remote sensing data, was
generally not a good option to obtain an overall improve-
ment over a deep profile (M and L probes), because the
corresponding improvement for the deeper layers was only
limited. This might be due to a decoupling of the topsoil
layers from the deeper layers and to the very complex
geohydrology observed in the deeper soil layers of the
OPE?® field. To estimate shallow profiles (H probes), top
layer (10 cm) soil moisture assimilation was more useful.
The spread on the mean relative RMSE values was quite
large, and therefore it is difficult to accept these general
findings for individual profiles. Also, these results are
function of the calibration. For some layers the model
corresponded very well to the observations and assimilation
had almost no effect, such as for the H probes, where the
calibration was very successful in all 3 observed soil layers
and the choice of the DA depth was of limited importance.
On the other hand, assimilation in biased layers caused a
reduction of bias in that layer and a general improvement in
the profile-integrated measure. Dee and da Silva [1998]
have shown that in the presence of bias, the Kalman filter
for state estimation only is able to correct for this bias in a
suboptimal way. This is also the idea behind the practice of
covariance inflation to deal with model bias in a conven-
tional Kalman filter.

[33] However, the profile-integrated RMSE might sug-
gest an improvement, while this is not necessarily true for
all individual layers. For example, in Figure 3 assimilation
at 80 cm depth for probe DL3 (for which the calibration did
not yield good results for all layers) decreased the perfor-
mance in the 3 layers above 80 cm, while the profile-
integrated RMSE was improved (see Table 2, where RMSE
for filtering at 80 cm - RMSE for the ensemble mean

DE LANNOY ET AL.: STATE AND BIAS ESTIMATION FOR SOIL MOISTURE
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without filtering = —1.54 vol%). Because of the presence
of bias in the innovations for the assimilation layer, the
performance for neighboring soil layers may degrade, rather
than improve, even if P, would be exact. Because forecast
bias was observed in all profiles which were calibrated for
more than 3 soil layers of observations, there is a need for
bias removal during assimilation. For some profiles the
approximate estimation of P, ; by the ensemble perturbation
(only 64 members) also resulted in an inaccurate propaga-
tion of the innovations to other layers.

[34] Despite of the clear presence of bias and the sub-
optimality of the filter, the ENKF columns in Table 3 show
that even for a few assimilation events in a single soil layer,
the root spatial (over all profiles in the OPE” field) mean
squared error for each soil layer individually was always
slightly reduced compared to the ensemble mean without
filtering, independent of the chosen DA depth.

[35] Comparison of the absolute values of the profile-
integrated RMSE revealed that the DA frequency had less
influence on the performance than the choice of the DA
depth. Figure 4 shows for each DA depth the spatial means
and standard deviations of relative profile-integrated RMSE
values (averaged over all probes with observations available
at the single considered DA depth) as function of the DA
frequency. The rescaling of the RMSE was similar to that in
Figure 2, but it is now for comparing experiments with
different DA frequencies at each single DA depth. The
number of probes contributing to the mean values is depen-
dent on the DA depth: for assimilation at 10 and 30 cm
depth, all 36 active probes contribute, for assimilation at
50, 120, 150 and 180 cm depth, only 24 M and L probes
participate and for assimilation at 80 cm, only 24 H and L
probes are taken into account. For most DA depths, the
optimal DA frequency with the ENKF (Figure 4, top) was
once a week or every 2 weeks. More frequent assimilation
was only beneficial to the profile estimate for assimilation at
80 cm and 180 cm, which are exactly the layers where
assimilation most improved the profile-integrated RMSE for
the deeper profiles. The decreased performance for more
frequent assimilation at other DA depths is entirely due to
erroneous propagation of the (sometimes biased) innova-
tions over the profile layers outside the assimilation layer.
The RMSE in a single layer always decreased for more
intensive assimilation in that particular layer (not shown).

[36] In a separate experiment, it was found that assimila-
tion in a single layer at the beginning of the validation
period only could not guarantee a good evolution of the
complete state, because the update was not propagated well
to all layers (causing model shocks) and because of model
errors. Therefore repeated assimilation was needed to
enhance the time mean state estimate.

4.1.2. Assimilation in All Soil Layers

[37] In a second experiment, the assimilation of all
available observations for a profile at each assimilation time
was studied, to evaluate the effect of varying DA frequen-
cies. Table 4 shows a considerable improvement in the
profile-integrated RMSE over the ensemble mean without
filtering at any DA frequency.

[38] In Figure 5, the effect on the individual soil layers is
studied as a result of complete profile assimilation. For each
single layer, the difference in RMSE between the filter run
and the ensemble mean without filtering was calculated.
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SM [vol%]
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SM [vol%]
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SM [vol%]

30/06,/01 30/08/01 30/10/01 30/12/01 01/03/02 01/05/02
Dote [May 1, 2001 — May 1, 2002]

Figure 3. Soil moisture (SM) time series at DL3 with observations (shaded), the control run (dashed

line), the ensemble mean run without filtering (dotted line), and the ENKF run (solid line) with 8-weekly
assimilation at 80 cm. The arrows indicate the filtering time steps.

8 of 15

W06401



W06401

DE LANNOY ET AL.: STATE AND BIAS ESTIMATION FOR SOIL MOISTURE

W06401

Table 3. Root Spatial Mean Square Error for the Control and Ensemble Mean Run Without Filtering at Individual Soil Layers and
Differences in RMSE (ENKF - Ens Mean) and (ENBKF - Ens Mean) for 8-weekly Assimilation at Different DA Depths®

DA Depth, cm

ENKF

ENBKF

Layer, cm Control Ens Mean 10 30 50 80 120

150 180 10 30 50 80 120 150 180

10 2.00 2.15 —0.07 0.00 0.00 —0.04 0.01

30 1.87 2.00 -0.03 -0.17 -0.11 -0.07 —-0.02
50 2.58 2.82 0.00 -0.10 —0.28 —0.05 —0.05
80 2.12 2.21 —0.11 —-0.06 —0.09 -0.30 -—0.05
120 223 2.53 0.01 —-0.05 -0.04 —-0.06 -0.26
150 2.28 2.55 0.00 —-0.05 —-0.05 —-0.06 -0.16
180 2.80 3.23 —0.04 —-0.03 -0.04 -0.07 -0.14

—0.01 0.00 —-0.60 —-0.02 0.00 —0.09 0.04 —0.04 -—0.04
—-0.02 000 0.02 -0.84 —-0.10 —-0.09 0.01 0.00  0.03
—-0.04 0.02 002 -0.14 —-1.41 -0.09 —-0.01 -0.06 —0.01
-0.08 —-0.03 -0.16 —-0.12 —-0.16 —1.11 -0.07 —0.16 0.00
-0.04 —-0.07 0.07 -0.09 -0.04 -0.06 —1.23 -0.01 -0.03
—-0.29 —-0.04 -0.02 -0.07 —-0.06 —0.08 —0.09 —-0.98 —0.07
—-0.12 -0.38 —-0.08 —-0.05 —-0.05 -0.08 —0.17 —023 -—1.61

“Values are in vol%. Control indicates the control run; Ens Mean indicates ensemble mean without filtering.

These differences in performances were linearly scaled
between 0 and 1 and, per depth, were spatially averaged
over all probes of the same type. The mean relative differ-
ences in RMSE indicated that profile assimilation had most
effect on the deeper layers. The upper layers, and especially
the layer at 10 cm, were only slightly improved by profile
assimilation. This may be due to three reasons. First, more
bias was in general found for deeper layers after calibration,
causing a larger assimilation correction than in the less
biased upper layers. Second, the finer discretization in the
upper part of the profile leads to some layers that do not
have a corresponding observation. For these layers updates
are performed via correction propagation (by P, ), which
might not always be correct and may counteract the updates
in the surrounding layers. Another reason is that corrections
in the topsoil layers persist for shorter periods, due to a
larger influence of the atmospheric forcings.

[39] Figure 6 (left) shows that more frequent assimilation
events of complete profiles always improves the soil mois-
ture profile estimate during the validation period.

4.2. Case Study 2 (ENBKF)

[40] Since the assimilation experiments in the previous
section clearly showed problems due to the presence of bias,

DA 10 cm DA 30 cm DA 50 cm

DA 80 cm

combined state and bias estimation was studied. A persis-
tence bias model was considered (b; = b;_;, with by = 0)
and v = 0.5 was tested.

4.2.1. Assimilation in One Layer

[41] The ENBKEF columns in Table 2 give the differences
between profile-integrated RMSE for all probes for ENBKF
assimilation every 8 weeks at the 7 different DA depths and
the ensemble mean without filtering. Overall, for all DA
depths the complete state estimate was enhanced compared
to the results for bias-blind state estimation only. The
measures varied with DA depth similarly to what was found
for state estimation only (Figure 2, right).

[42] Closer investigation of the performance for the
individual layers in Table 5 for assimilation once a week
revealed that the improvement over the complete profile
was mostly due to an improvement for the assimilation
layer. The fact that layers surrounding the assimilation layer
did not always benefit from the bias correction suggests
problems for the practical implementation. A first problem
is the assumed bias model and the initialization of the bias.
The bias in all profile layers cannot be retrieved through
assimilation in a single layer, because there is no knowledge
on the vertical variability of the bias included in the bias
model: the bias system is not observable, if observations are

DA 120 cm DA 150 cm

1.0
0.8

0.6
0.4

0.2
0.0

aillliy

Mean relative RMSE [-]

DA 10 cm DA 30 cm DA 50 cm

DA 80 cm
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0.6
0.4
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Figure 4.
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Influence of DA frequency on the mean relative values for the profile-integrated RMSE for

(top) ENKF and (bottom) ENBKF at each DA depth.
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Table 4. Differences in Profile-Integrated RMSE (ENKF-Ensemble
Mean Without Filtering) and (ENBKF - Ensemble Mean Without
Filtering) for Assimilation of All Available Observations in a
Profile at a Weekly and 8-weekly DA Frequency”

DA Frequency

ENKF ENBKF
Probe d g d g
BHI —0.49 —0.23 —1.15 —0.64
BH2 0.03 0.00 —0.41 0.04
BH3 —0.16 —0.02 —1.57 —0.82
BH4 —2.61 —2.24 —5.04 —4.19
BL1 —2.66 —0.96 —5.05 —3.35
BL2 —4.61 —~2.56 —5.83 —3.53
BL3 —0.89 —0.17 —3.78 —2.52
BL4 —1.70 —0.94 —4.48 —3.84
BMI —1.42 —0.60 —3.39 —2.81
BM2 —1.71 —0.69 —-9.27 —7.15
BM3 —1.48 —0.63 —-2.92 —2.22
BM4 -3.17 -2.32 —5.39 —4.62
DH1 —0.91 —0.50 —2.06 —1.47
DH2 —0.37 —0.26 —1.34 —0.98
DH3 —1.83 —0.72 —4.72 —4.16
DH4 —1.39 —0.39 —2.73 —1.72
DL1 —1.80 —1.29 —3.64 -3.19
DL2 —1.33 —0.50 —4.45 -3.69
DL3 —4.28 —2.36 —8.28 —7.41
DL4 —2.91 —1.94 —9.24 —7.80
DMI —4.14 —2.95 —7.49 —6.61
DM2 —1.75 —0.80 —4.82 —4.54
DM3 —1.96 —0.79 —4.71 —4.16
DM4 —3.03 —1.76 -7.99 —6.85
#Values are in vol%.
DA 1 day DA 1 week DA 8 weeks
@ z 1.0 1.0 >|< 1.0 >|<
2 g% 08 0.8 0.8
g Zx
?3& 06 0.6 0.6
T ¥
I Sy 0.4 0.4 0.4
v g2
5% ¢o2 0.2 0.2
& £ o0 0.0 ‘ 0.0
10 30 80 10 30 80 10 30 80
@ z 1.0 T 1.0 T 1.0 X
o
g 2 Z 0.8 ><< 0.8 0.8
' O 06 0.6 0.6
= Q¢
I €'y 0.4 0.4 0.4
o Q¢
5 %02 0.2 0.2
& % oo0 0.0 0.0
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[*]
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Depth [ecm] Depth [cm] Depth [ecm]
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not available for all layers. The constant bias model is
basically an identity matrix I, so that the rank of the
observability matrix [Maybeck, 1979] for the bias system
never can reach # if not all » bias variables corresponding to
the n state variables are measured somehow. A second pro-
blem is the estimation of the state error covariance P, ; and
the assumption that P,; would be proportional to P, ;. On
the basis of this assumption, it is normal that improper
propagation of random error corrections (for a regular
Kalman filter without bias removal) also introduces inac-
curate propagation of bias corrections over the profile.
Further, for this study, there was no physical evidence that
P,; would be proportional to P,; and more accurate
covariance models would definitely further enhance the
filter’s performance.

[43] The ENBKF columns in Table 3 show that for
assimilation in a single soil layer, the root spatial (over all
probes in the OPE? field) mean squared error was generally
reduced at the chosen DA depth compared to the ensemble
mean without filtering, while the other layers were only
marginally affected.

[44] Also in the assimilation layer, the results could be
further improved, e.g., by the use of a different bias model
other than a persistence model. Figure 7 shows the temporal
evolution of soil moisture at 80 c¢cm for the DL3 probe,
which shows bias in this layer, with assimilation every
8 weeks. Figure 8 shows the complete profile around the
first assimilation event. The zoom plot in Figure 7 displays
how the analysis almost equals the observations at the
assimilation time step. After assimilation, the influence of
the bias-blind state update (containing a bias part) is still

DA 1 day DA 1 week DA 8 weeks
w 110 1.0 1.0
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g 2 E 0.8 0.8 0.8
T8 06 0.6 0.6
Tt
IS o 04 0.4 0.4
%]
22
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o
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Figure 5. Means of relative differences (filter run-ensemble mean without filtering) in RMSE for the
individual soil layers for assimilation ((left) ENKF and (right) ENBKF)) of all available observations in

the profiles.
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Figure 6. Mean relative profile-integrated RMSE for
profile assimilation with (left) ENKF and (right) ENBKF
as a function of varying numbers of observations in time.

persisting and slowly disappears, which causes an overshoot
in the predicted bias-corrected state estimate due to an
additional bias term in X; = X; + b;_;, as long as the
influence of the bias-blind state update is present. This
problem is further discussed in a subsequent paper (De
Lannoy et al., submitted manuscript, 20006).

[45] Figure 4 (bottom) shows that the effect of the DA
frequency on the profile-integrated RMSE for ENBKF
depended on the DA depth in a similar way as for ENKF.
However, for ENKF the soil moisture estimate in the
individual soil layers always improved with more intensive
assimilations, while for ENBKF the optimal DA frequency
was about 2 weeks (almost independent of the DA depth)
and more intense assimilation generally did not further
improve the results (not shown).

4.2.2. Assimilation in All Soil Layers

[46] Through assimilation of all available observations in
a profile, less negative effects from incorrectly initialized
bias and erroneous vertical correction propagation can be

Table 5. RMSE for the Ensemble Mean Without Filtering (Ens
(ENBKF - Ens Mean) for Weekly Assimilation at 80 ¢cm®
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expected (Table 4). Again for the upper layers, there was
least advantage from profile assimilations, except for
H probes (Figure 5).

[47] Figure 9 shows the root of the spatial (over all
probes) mean square error for some individual layers, in
the case of 4 assimilation events of all available profile
information in the field. It is clear that after assimilation, the
error in all layers is reduced far below the value for the
control run.

[48] To obtain the best results with ENBKF, it is advised
to assimilate at a DA frequency of 1 or 2 weeks (Figure 6).
In contrast to the ENKF, more intensive assimilations did
not further improve the overall profile or individual layer
results. A DA frequency of 1 or 2 weeks is slightly less than
the temporal autocorrelation length found for soil moisture
in the top layer of the OPE? field [De Lannoy et al., 2006b].
This autocorrelation length for soil moisture depends on the
atmospheric forcings. While for meteorological applica-
tions, the optimal DA frequency was found to depend on
the model [McPherson, 1975], for bounded hydrological
problems, like the estimation of soil moisture, the forcings
(mainly precipitation) will have a large impact.

5. Filter Performance
5.1. Normalized Profile-Integrated RMSE

[49] Figure 10 shows spatial means of normalized profile-
integrated RMSE values for different probe types as func-
tion of the kind of model run. For each probe, the RMSE
values resulting from the different experiments were divided
by the RMSE obtained for the ensemble mean run without
filtering for that probe, to evaluate the different experiments
with respect to this reference run. A spatial average of
the resulting normalized RMSE values over all probes of the
same type was calculated. Here, no linear rescaling of the
profile-integrated RMSE for the different experiments was
performed, as was the case for the “relative” RMSE in

Mean) In Each Individual Profile Layer and Difference in RMSE

Ens Mean ENBKF

Layer, cm 10 30 50 80 120 150 180 10 30 50 80 120 150 180
BH1 2.28 2.78 — 1.91 — — — 0.10 —0.36 — —1.11 — — —
BH2 3.60 1.40 — 1.11 — — — 0.31 0.19 — —0.55 — — —
BH3 4.06 2.05 — 1.07 — — — —0.01 0.23 — —0.68 — — —
BH4 9.07 3.35 — 7.09 — — — —2.40 —1.59 — —6.39 — — —
BL1 3.19 7.17 7.57 1.86 2.32 13.54 16.58 0.35 -0.33 —0.84 —1.01 —0.19 —0.38 0.36
BL2 5.37 1.66 1.83 5.25 2.24 17.06 14.89 —2.11 0.21 2.23 —3.53 —0.23 —1.57 —1.04
BL3 9.51 4.79 4.82 1.24 1.27 6.78 9.88 —0.73 1.07 0.77 —0.75 0.16 1.52 —1.39
BL4 2.68 1.05 3.80 6.12 10.21 4.25 7.95 —0.13 0.72 1.48 —5.00 —1.20 -0.77 0.04
DHI1 2.63 0.74 — 4.70 — — — 0.05 0.01 — —4.11 — — —
DH2 3.78 1.75 — 2.29 — — — —0.12 0.31 — —1.67 — — —
DH3 8.48 5.75 — 3.77 — — — —1.13 —-0.92 — —2.98 — — —
DH4 3.96 5.41 — 2.15 — — — 0.32 0.35 — —1.52 — — —
DL1 3.82 7.37 9.21 1.98 2.09 1.65 3.71 —0.55 —1.44 —1.75 —1.18 —-0.30 0.78 —0.93
DL2 4.92 1.73 1.39 13.64 0.82 2.70 4.94 —2.02 —0.81 0.03 —11.57 1.55 2.19 3.21
DL3 6.64 5.98 6.19 13.43 11.77 17.60 8.59 0.37 2.64 1.76 —10.68 —0.35 —-3.20 0.04
DL4 4.24 2.59 8.50 4.87 23.49 8.41 14.33 —0.40 —1.40 —2.18 —4.02 —1.65 —4.80 —2.88

“Values are in vol%. For M probes, no observations at 80 cm are available for assimilation. Dashes appear where no validation data are available.
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Figure 7. (top) Similar to Figure 3 but only at 80 cm depth and with bias correction (ENBKF). (bottom)
Zoom of the first two assimilation steps (squares correspond to the black solid line in Figure 7, top).

previous plots, where experiments with different DA fre-
quencies or DA depths were compared to each other, not to
a reference run. V is for the RMSE obtained by the control
run validation and P and K stand for the filtering runs. For
K runs, only assimilation in a single soil layer was
performed, and per K run the results for the different DA
depths are shown. For P runs, all available profile data were
assimilated. K; and P, are for assimilation without bias
correction, while for K, and P,, bias estimation was
included. For the filtering runs, assimilation was performed
at a fixed DA frequency of every 8 weeks.

[s0] The ensemble mean without filtering (dashed line)
was generally worse than the control run (V), which
explains that through filtering in 1 layer without bias
estimation (K;), it was difficult to reduce the RMSE below
the value for the control run (dotted line), as discussed
before. For K, the RMSE decreased below the level of the
control run for some DA depths, but the spread on the
relative values increased. For H probes, assimilation with
bias correction yielded better profile estimates after assim-
ilation at any depth. For M probes, it is advised to
assimilate in the deepest layers and for L probes it is best
to assimilate in the middle layers. Profile assimilation
without bias correction (P;) led to slightly better results
than the control run, and with bias correction (P,) the results
improved a lot, mainly for the deeper M and L profiles.

5.2.

[5s1] The innovations are the most readily available infor-
mation to judge if a filter works within its underlying
assumptions. If the errors on the observations and on the
a priori state estimate would be zero mean, as is assumed in
the derivation of the Kalman filter, the innovations should
also be distributed around a zero mean for linear systems.
For bias-blind state estimation (ENKF, which is also the
first stage of the ENBKF), the kth element of the ensemble
mean innovation vector is given by [y; — HX; i

[52] To check the consistency of the innovations with the
imposed a priori error covariances and observation error
covariances [Reichle et al., 2002a], the ensemble mean
innovation for each point in space at each assimilation

Innovations

event was normalized by the imposed [Hl-f’;,l-HiT + Rl
Figure 11 shows the space-time pdf of all normalized
innovations over 25 and 4 assimilation events and for all
24 sensors at 80 cm depth. The mean of the innovations in
space and time differed clearly from zero, which reflects the
presence of bias in the bias-blind estimates. The spread
observed in Figure 11 for the bias-blind state filtering
suggests a good consistency, but results from the innovation
variability in both space and time. The temporal distribu-
tions of the normalized innovations at a single location
showed that the imposed spread was chosen larger than
necessary for the bias-blind state filtering, which resulted in
temporal pdfs with a standard deviation of less than 0.7,
mainly in case of intensive assimilations. For the spatial
distributions, the standard deviation equaled or exceeded 1.
In general, the imposed spread P, ; to represent the uncer-
tainty in the bias-blind forecasts was well chosen for the
surface layers (not shown), but could have been reduced in
deeper soil layers, especially for more intensive assimila-
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Figure 8. Soil moisture profile at DL3 of observations
(triangles), the control run (dashed line), the ensemble mean
run without filtering (dotted line), and the ENBKF run
(solid line) with assimilation at 80 cm on 2 October 2001
around 1000 LT. Profiles (left) 12 hours before assimilation,
(middle) at the assimilation instant, and (right) 12 hours
after assimilation.
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tions to enlarge the accuracy of the final a posteriori (bias-
corrected) state estimate.

6. Conclusions

[53] Soil moisture was estimated for 36 profiles in the
OPE3 field by state and bias estimation through the assim-
ilation of real soil moisture measurements in a nonlinear
land surface model by an ensemble Kalman filter. The focus
is on the impact of assimilation in several soil layers at
different frequencies and on the optimization of the method
for a real study, without an in depth evaluation of the effect
on related state variables or fluxes, such as evapotranspira-
tion or runoff, which is discussed by De Lannoy et al.
(submitted manuscript, 2006).

[s4] The performance for state estimation was found to be
limited by the presence of model bias. Earlier research
[De Lannoy et al., 2006a] had shown that bias was remain-
ing in some layers after calibration of the individual profiles
and also that bias was sometimes introduced by ensemble
generation. Therefore, in addition to the ENKF for state
estimation, a filter for bias estimation was introduced.

[s5] For assimilation in a single layer during a fixed time
interval, the optimal DA frequency was dependent on
the DA depth (both with and without bias estimation). If
the assimilation causes adverse effects in layers outside the
assimilation layer, e.g., because of bias in the innovations or
an incorrect state error covariances, then an intensive
assimilation should be avoided. The optimal assimilation
depth was generally 80 and 180 cm for the deep M and
L profiles, respectively and not determined for shallow
H profiles. This was partially a result of the calibration:
the model showed more deficiencies for deeper soil layers
and hence assimilation has a larger impact. Also, the upper
layer soil moisture might have been decoupled from the
very complex subsurface soil moisture during considerable
periods. This is an unfortunate finding for the estimation of
the complex soil moisture profiles, when remote sensing
data are used, which generally only provide near-surface
soil moisture.

[s6] Assimilation of all available data for a profile had
most effect on deeper soil profile layers. The impact on the
upper layers was only marginal. The optimal assimilation
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Figure 10. Mean normalized profile-integrated RMSE
values for the control run (V), for profile assimilation
without and with bias correction (P; and P», respectively),
and for assimilation in a single layer without and with bias
correction (K; and K,, respectively). For each type of
Kalman filtering, assimilation at the different available
depths is shown: for H probes at 10, 30, and 80 cm, for
M probes at 10, 30, 50, 120, 150, and 180 cm, and for
L probes at 10, 30, 50, 80, 120, 150, and 180 cm.
Observations were assimilated with an 8 week interval.

frequency for profile assimilation with bias correction was
about 1 to 2 weeks, which is related to the autocorrelation
length for soil moisture, and ultimately to the atmospheric
forcings. Without bias estimation, there was always a
benefit in a more frequent assimilation, while with bias
correction, it was possible to greatly reduce the assimilation
intensity.

[57] Through the implementation of bias estimation
without feedback [Friedland, 1969], the overall profile-
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integrated performance was increased, but this was mostly
due to an increased performance in the assimilation layer
and less by improvements in surrounding layers. This is due
to the zero initialization of the bias vector and the assumed
persistence bias model, without any knowledge on the
vertical “dynamics” of this bias. It is impossible to estimate
the bias in layers for which no observations or knowledge of
the truth is available, i.e., the bias system is not observable
if not all bias variables in a bias vector are observed.
Further, the bias error covariance was assumed proportional
to the bias-blind state error covariance, which might rein-
force problems encountered in state estimation due to
inaccurate estimation of the state error covariance. Also
through this method, model overshoots in the state estima-
tion were found. This is because the innovation for the bias-
blind analysis contains a bias part and the state correction
disappears only slowly, while the bias estimation method
assumes that the forecast generated by a bias-blind analysis
(the bias correction is not fed back) contains the same bias
as was estimated at the analysis step. The advantages and
disadvantages of different variants to Friedland’s state and
bias estimation are further discussed by De Lannoy et al.
(submitted manuscript, 2006).
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Figure 11. Pdfs of all normalized ensemble mean

innovations for all observation locations at 80 cm depth at
(top) 25 assimilation events with an interval of 1 week and
(bottom) 4 assimilation events with an interval of 8 weeks.
The dashed line represents the sample mean. The smooth
curve represents the standard normal distribution. “Stdv.”
stands for standard deviation, “Skew.” stands for skewness,
and “Kurt.” stands for kurtosis.
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