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[1] Climate model prediction skill is currently limited in response to poor land surface
soil moisture state initialization. However, initial soil moisture state prediction skill
can potentially be enhanced by the assimilation of remotely sensed near-surface soil
moisture data in off-line simulation. This study is one of the first to evaluate such potential
using actual remote sensing data together with field observations. Here the ensemble
Kalman filter (Kalman, 1960) is used to assimilate scanning multifrequency microwave
radiometer derived near-surface soil moisture data from 1979 to 1987 into the catchment-
based land surface model (CLSM). CLSM is used by the NASA Goddard Modeling and
Assimilation Office global climate model. Enhancement to land surface soil moisture
initialization skill is evaluated for Eurasia using the ground soil moisture measurements
collected in Russia, Mongolia, and China. As initial model and observation error
predictions were poor, the assimilation improved both the surface and root zone soil
moisture estimates only when the observation error was less than the model error. This
emphasizes the need for good quality remotely sensed soil moisture data sets, together
with reliable observation and model error assessments, in order to ensure improved
soil moisture estimates through data assimilation. When the relative magnitude of
predicted observation and model error was matched to the error determined from field
observation comparison, improvements in root zone and surface soil moisture estimates
were guaranteed given unbiased model and satellite observations.
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1. Introduction

[2] Accurate land surface moisture initialization in fully
coupled climate system models is critical for seasonal-
to-interannual climatological and hydrological prediction
[Koster et al., 2004]. However, current seasonal climate
prediction models do not simulate seasonal or interannual
variations of soil moisture that are in agreement with
observations, even when a land surface scheme is coupled
with the climate model. To improve this, the land surface
states are often initialized using outputs generated from an
uncoupled land surface model forced by observations (i.e.,
observed rather than predicted precipitation and radiation
[e.g., Koster et al., 2004]). Nonetheless, even with the
uncoupled land model simulation, soil moisture predictions

are still often poor due to poor model initialization, forcing
errors, simplified model physics, and uncertain model
parameters [Houser et al., 2001]. Therefore constraining
model soil moisture prediction using remotely sensed soil
moisture observation assimilation has been proposed as a
way to mitigate these errors and improve subsequent
predictions [Walker and Houser, 2001].
[3] Satellite remote sensing can provide global near

surface soil moisture estimates for use in climate model
initialization that cannot be obtained through traditional
station observation networks. Global 1=4 degree resolution
surface soil moisture content has been derived using C band
passive microwave observations from the Nimbus 7 satellite
scanning multifrequency microwave radiometer (SMMR)
for the 1979 to 1987 period of operation [Owe et al., 2001].
Moreover, C band passive microwave soil moisture data is
being derived from the Advanced Microwave Scanning
Radiometer for the Earth (AMSR-E) observing system
launched in 2001 on the Aqua satellite. While no C band
measurements are available between SMMR and AMSR-E,
low-latitude soil moisture has been estimated using Tropical
Rainfall Measuring Mission (TRMM) X band microwave
observations [Bindlish et al., 2003; Gao et al., 2004, 2006]
since 1998. Further, L band passive microwave soil mois-
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ture data is expected to be available from 2008 with the
launch of the Soil Moisture and Ocean Salinity (SMOS)
mission. A limitation of these microwave based soil mois-
ture estimates is their confinement to the top few centi-
meters of soil and subjection to significant vegetation, soils,
and roughness error sources. However, it has been demon-
strated that assimilation of surface soil moisture observa-
tions into land surface models should help mitigate model
and observation errors and provide a more accurate root
zone soil moisture estimate than modeling alone [Walker et
al., 2003; Reichle and Koster, 2005], which will be crucial
for accurate climate model initialization and prediction.
[4] Data assimilation is the process of merging observa-

tions with a model prediction to provide that model with the
best estimate of the current state of the natural environment,
and is widely used in atmospheric [e.g., Daley, 1991] and
oceanic modeling studies [e.g., Bennett, 1992]. While its
use in land surface and hydrological modeling is relatively
new, it has shown promise for improving hydrologic pre-
dictions by incorporating soil moisture [e.g., Houser et al.,
1998; Walker et al., 2003; Reichle et al., 2002a, 2002b;
Zhang et al., 2005], snow [e.g., Sun et al., 2004; Rodell and
Houser, 2004; Dunne and Entekhabi, 2006; J. Dong et al.,
Scanning multichannel microwave radiometer snow water
equivalent assimilation, submitted to Journal of Geophysi-
cal Research, 2006], surface temperature [e.g., Radakovish
et al., 2001]. However, the performance of the data assim-
ilation algorithm is highly dependent on reliable estimates
of model and observation error, which are difficult to
estimate without an estimate of the truth for comparison.
Therefore characterizing the model and satellite observation
error becomes an important part of assimilation studies that
use real satellite data [e.g., Ni-Meister et al., 2005; Dong et
al., 2005].
[5] The NASA Global Modeling and Assimilation Office

(GMAO; an amalgamation of the former Data Assimilation
Office and the NASA Seasonal-to-Interannual Prediction
Project) aims to improve seasonal-to-interannual climate
predictions through accurate initialization of a global cou-
pled earth system model. To enhance initialization accuracy,
innovative data assimilation algorithms are being developed
to merge satellite data and model predictions. To this end,
Walker and Houser [2001] included an extended Kalman
filter surface soil moisture data assimilation strategy in the
GMAO’s catchment-based land surface model (CLSM
[Koster et al., 2000]). The ensemble Kalman filter has also
been implemented in the CLSM [Reichle et al., 2002a],
being simply an alternative methodology for propagating
the state covariance matrix that does not require model
linearization. A comparison of these two approaches using
synthetic data showed very little difference in the results,
hence the more generic ensemble Kalman filter has been
adopted in this study.
[6] This paper assimilates SMMR-derived surface soil

moisture data into the CLSM for the period of 1979–1987.
This is one of the first studies to demonstrate the assimila-
tion of real satellite data at a large continental scale over a
long period. This study differs from a similar CLSM-
SMMR assimilation study by Reichle and Koster [2005]
undertaken in tandem with this study in three aspects: (1) the
satellite-based soil moisture contents in their study were
scaled to match the model’s climatology before assimila-

tion, (2) their model error was generated based on calibrated
model error parameters [Reichle et al., 2002a] and not on
realistic model error values, and (3) their evaluation was
conducted by comparing the correlations between the as-
similated and observed data and between the modeled and
observed data. In contrast, this study uses reliable model
and satellite observation error information from a ground
observation comparison in an earlier study [Ni-Meister et
al., 2005]. Moreover, the ensemble Kalman filter soil
moisture improvement performance is evaluated using the
Eurasian station soil moisture observation network, being
the most extensive soil moisture data set available during
the SMMR time period.

2. Kalman Filter Assimilation Scheme

2.1. Kalman Filter

[7] The Kalman filter is a linearized statistical approach
that provides a statistically optimal estimate of a linear
dynamic system, by integrating observations with model
predictions (forecast system states) using a weight matrix
(Kalman gain) that is based on the relative magnitudes of
their respective error covariances [Gelb, 1974]. This pro-
vides a framework within which the entire system can be
modified, with the error covariance representing the reli-
ability of the observations and model prediction. If the
observations are unreliable, the model correction will be
very small, and if the observations are reliable, the model
correction will be such that the model estimate becomes
very close to the observed value. Additionally, the Kalman
filter can update not only the observed values, but also other
correlated state variables.
[8] Through a series of forecasting and update (analysis)

steps, the Kalman filter algorithm tracks the conditional
mean of the system states and their error covariance.
Updates to these forecast state and covariance values are
made periodically when observations become available,
with the correction being the weighted difference of the
observation and model predicted observation. The tradition-
al update equation of the Kalman filter is given by

Xa ¼ Xf þK Z�HXf
� �

; ð1Þ

where the Kalman gain matrix is

K ¼ PfHT HPfHT þ R
� ��1

; ð2Þ

and X is the system state vector, H is the measurement
matrix which linearly relates the observations to the system
state, Z is the observation vector, P is the model error
covariance, R is the observation error covariance, super-
scripts f and a indicate forecast (background) and analysis
times, respectively, and the superscript T stands for matrix
transpose. The matrix operation HK yields the ratio of the
model error to the total error (model error plus observation
error). In the context of this paper the state vector consists of
the surface excess, root zone excess and catchment deficit
prognostic states used by the CLSM to diagnose surface,
root zone and profile soilmoisture.Moreover, the observation
is a surface soil moisture content and the measurement
matrix relates surface soil moisture to the CLSM
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prognostic states; see Walker and Houser [2001] for more
details.

2.2. Ensemble Kalman Filter

[9] To apply the Kalman filter, the equations for evolving
the system states must be written in a linear state-space
formulation. When these equations are nonlinear, the Kal-
man filter is called the extended Kalman filter, and is an
approximation of the nonlinear system that is based on first-
order linearization. Walker and Houser [2001] have imple-
mented a one-dimensional version of the extended Kalman
filter in the CLSM with the simplifying assumption that
errors in different catchments are uncorrelated. The ensem-
ble Kalman filter is an alternative to the extended Kalman
filter for nonlinear problems [Evensen, 1994; Houtekamer
and Mitchell, 1998], using a Monte Carlo approach to
produce an ensemble of model trajectories which are then
used to estimate the model covariances. This approach has
been successfully introduced into the GMAO ocean assim-
ilation [Keppenne, 2000] and soil moisture [Reichle et al.,
2002a] estimation problems.
[10] Using the ensemble Kalman Filter approach the

background state covariance matrix may be calculated as
[Evensen, 1994]

Pb ¼
Xf � Xf

� �
Xf � Xf

� �T

m� 1
: ð3Þ

This could then be used in equation (2) directly. However,
in the ensemble Kalman filter approach, the traditional
update (analysis) equation was rewritten as equation (4) so
that Pb and H are not calculated explicitly [Evensen, 1994;
Houtekamer and Mitchell, 1998; Keppenne, 2000]. In this
way

Xa ¼ Xf þ BTb; ð4Þ

where

BT ¼ PbH
T;

and

b ¼ HPfHT þ R
� ��1

y� Zf
^

� �
;

with y = Z + &&&&&& to account for error in the observation
[Burgers et al., 1998], and & being a normally distributed
zero mean perturbation of variance R. The vector b is
calculated for each ensemble member from

HPfHT þ R
� �

b ¼ y� Zf
^

� �
; ð5Þ

where HPfHT = qqT/(m � 1) is the estimated observation

given by HX, and
––
^
Z is the averaged value of the estimated

observations. The updates are then made individually to
each of the ensemble members. Making a substitution in
equation (4) it is also possible to estimate B from (6) to save
computing HPHT directly such that

BT ¼ Xf � Xf

m� 1
qT: ð6Þ

See Reichle et al. [2002a] for more details on the CLSM

ensemble Kalman filter application.

3. Data Sets

[11] Figure 1 shows a map of the Eurasian station
measurement network and the corresponding CLSM catch-
ments used in the evaluation. This study used the same
ground soil moisture measurements, SMMR derived soil
moisture data, and CLSMmodel inputs as used byNi-Meister
et al. [2005] for model and observation error characterization.
The following is a summary of the data sets used in this study;
a detailed description of these data sets is given byNi-Meister
et al. [2005].

3.1. Ground Observations

[12] Historical Eurasian soil moisture observations
archived in the Soil Moisture Data Bank (SMDB [Robock
et al., 2000]) were used to evaluate the data assimilation
results presented in this study. The SMDB covers large
areas including 43 Chinese, 36 Mongolian and 130 Russian
soil moisture monitoring stations over long time periods,
with 1981 to 1991, 1973 to 1997, and 1978 to 1985 periods
of record, respectively. Soil moisture profiles were mea-
sured biweekly over the top 1 m at 10 cm increments using
the standard gravimetric technique. The surface zone soil
moisture was defined as the shallowest observation avail-
able, which for China is the top 5 cm and for Mongolia and
Russia is the top 10 cm. The root zone soil moisture was
defined as the top 1m average. The plant available soil
moisture observations for Mongolian and Russian sites have
been converted to total soil moisture to create a consistent
data set for comparison with model and assimilation results
[Ni-Meister et al., 2005].
[13] The evaluation of assimilation results from this data

set is complicated by differences in surface zone thickness;
5–10 cm for station data, 1 cm for SMMR, and 2 cm for
CLSM. Moreover, there are fundamental differences in
spatial resolution: station measurements are averages for
0.1 to 20 ha areas, SMMR data are areal average soil
moisture estimates over 625 km2 pixels, and CLSM esti-
mates are averages for up to 10,000 km2 catchments.
Despite these limitations, this is the most comprehensive
soil moisture ground truth data set available and some
useful conclusions can still be made.

3.2. Satellite Observations and Their Errors

[14] Surface zone (top 1 cm) soil moisture estimates at
25 km spatial resolution have been derived from the
Nimbus 7 Scanning Multifrequency Microwave Radiometer
(SMMR) observations from 1979 to 1987 [Owe et al., 2001].
The Nimbus 7 had a 2–3 day revisit cycle with noon and
midnight overpasses; both day and night data have been used
in this analysis when available. Moreover, soil moisture data
for pixels with large optical depth or unrealistic ‘‘wet’’ pixels
have been removed to eliminate the use of potentially erro-
neous data due to dense vegetation or divergence of the soil
moisture retrieval algorithm.
[15] The quality and error of the SMMR data has been

fully analyzed by comparing SMMR-derived surface soil
moisture with the SMDB data of Ni-Meister et al. [2005]
and using station soil moisture observations from Illinois
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[Owe et al., 2001], Russia, Mongolia and Turkmenistan
[de Jeu and Owe, 2003]. The validation results indicated
that soil moisture estimation accuracy (RMSE) was approx-
imately 10% v/v. Figure 2a shows the averaged SMMR
observation errors (variance) in summer. These errors have
a spatial average of 12% v/v which is consistent with the
earlier findings. However, it was found that the Chinese
SMMR surface zone soil moisture is typically wetter while
Mongolian and Russian SMMR surface zone soil moisture
is typically drier than SMDB values, except in the north-
eastern Russian wet climate. Therefore the SMMR soil
moisture estimates were found to be biased, less than 5%
v/v dry in dry climate areas but over 10% v/v (as high as
20% v/v) wet in wet climate areas. Nonetheless, the
seasonal variations were generally well represented. The
largest SMMR biases were found in China and northeastern
Russia, where precipitation and vegetation cover is also
larger.

3.3. CLSM Predictions and Their Errors

[16] Novel CLSM features include its topographically
defined catchments [Koster et al., 2000], its explicit subgrid
soil moisture variability treatment based on statistical
topography induced heterogeneity, and its TOPMODEL
[Beven and Kirkby, 1979] concept used to relate water

table distribution to topography. This leads to the defini-
tion of three bulk moisture prognostic variables (catch-
ment deficit, root zone excess and surface excess) with
specific moisture transfer between them. Using these three
prognostic variables, the catchment is divided into
stressed, unstressed and saturated soil moisture regimes
with separate evapotranspiration flux calculations for
each, and the catchment average surface zone (top 2 cm),
root zone (top 1 m) and profile (from 1 to�3.5 m depending
on total soil depth) soil moisture values calculated. The
CLSM has been coupled with the GMAO’s atmosphere and
ocean models (see Walker and Houser [2001] for a more
detailed summary of the CLSM).
[17] The quality and error of CLSM soil moisture pre-

dictions have been fully evaluated by comparing model
predicted surface and root zone soil moisture with SMDB
data of Ni-Meister et al. [2005]. The averaged summer
model error (variance) in surface soil moisture for the period
of 1979–1987 is shown in Figure 2c, with a spatial average
of 10% v/v. Moreover, the CLSM was found to be dry
biased in the already relatively dry Mongolian and southern
Russian regions, and wet biased along the relatively wet
Chinese east coast and the boundary between Mongolia and
Russia. The evaluation study also found that the CLSM
surface and root zone soil moisture was biased less than 8%

Figure 1. Eurasian catchments and observation stations (shown by stars) used in this study. Only the
catchments that contain soil moisture observation station are shown.
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Figure 2. Actual and predicted summertime surface soil moisture observation error covariance (R) and
model error covariance (HPHt), and their ratios for the period of 1979–1987.
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v/v dry in dry climate and frozen soil areas, but biased over
8% v/v (as high as 16% v/v) wet in wet climate areas.
Additionally, CLSM suffered from an underestimation in
the surface zone seasonal soil moisture variation.

4. Application of the Ensemble Kalman Filter in
This Study

[18] Both the model and satellite observation errors, or
more accurately their error ratio (i.e., R/(R + HPHT) where
HPHT is the error covariance of the predicted observation),
are required by the Kalman filter. As the previous work by
Ni-Meister et al. [2005] on true model and satellite obser-
vation error (see Figures 2a and 2c) was only able to
provide indicative error climatologies, due to the sparse
ground observation network and infrequent measurements
for each station, it was necessary to obtain continuous
through space and time error estimates from alternative
measures, rather than use the observed values directly. To
this end the error estimates provided with the SMMR-
derived soil moisture data set from Owe et al. [2001] were
used to approximate R, the model ensemble was used to
approximate P, and an assessment made against the ob-
served true climatologies.
[19] The SMMR error estimates provided with the data

set from Owe et al. [2001] were derived as a function of
retrieved vegetation optical depth (Figure 2b). These error
estimates were found to be smaller than the observed
satellite observation errors (Figure 2a), which were estimated
by comparing the SMMR derived soil moisture with the
station data (see the details in the work by Ni-Meister et al.
[2005]), having average values of 7% v/v and 12% v/v,
respectively (Table 1).
[20] The model error includes three components: (1) ini-

tialization error, (2) forcing error, and (3) model parameter
and physics error. The error components from 1 and 2 are
easily dealt with while the component from 3 is more
problematic. The initialization error, or rather the uncertainty
in the initial conditions, is represented by perturbing the
ensemble of initial state estimates such that the ensemble
spread represents this uncertainty. Likewise the forcing error
is represented by an ensemble of forcing fields whose spread
represent their respective uncertainty. As the level of uncer-
tainty in initialization and model forcing fields is fairly well
known, representative perturbations can be reliably esti-
mated; magnitudes of perturbations used in this study
were the same as those used in the studies by Reichle et
al. [2002a] and Reichle and Koster [2005], and the reader
is referred therein for details. However, the amount of
error due to model parameters and physics as apart from
initialization and forcing is largely unknown and there are
wide ranging recommendations on its inclusion. The
approach taken by Reichle and Koster [2005] was to
use three calibrated parameters that are then used to
perturb the three soil moisture states at each time step,

without considering how well the predicted error from the
ensemble spread (Figure 2e) compared with the actual
error based on comparison with station observations
(Figure 2c). The calibration was based on optimization
of assimilation results for a twin experiment where the
truth was generated from the same model as used in the
assimilation, just using a different forcing data set.
[21] In this data assimilation study two sets of model error

parameters are assessed. The first (Figure 2e) are the
calibrated (termed unmatched error) error parameter values
by Reichle et al. [2002a] and the second (Figure 2g) are
error parameter values chosen to maximize the agreement
(termed matched error) between predicted and actual mean
error ratio; i.e., ratio of the satellite observation error to the
total error (satellite observation error + model error). The
actual error ratio was calculated based on the SMMR
(Figure 2a) and model error (Figure 2c) fields from com-
parison with station observations. Figures 2e and 2g show
the unmatched and matched predicted surface soil moisture
error estimates, respectively, and are to be compared with
the actual surface soil moisture errors derived from com-
parison with station data in Figure 2c. The actual mean error
ratio estimated from station observations (i.e., Figure 2a
data divided by Figure 2c data) is shown in Figure 2d, while
the predicted unmatched mean error ratio (i.e., Figure 2b
data divided by Figure 2e data) is shown in Figure 2f and
the predicted matched mean error ratio (i.e.,. Figure 2b data
divided by Figure 2g data) is shown in Figure 2h.
[22] As described already, the Kalman filter updates the

system states based on the relative magnitudes of the model
and satellite observation errors. In this study, both the
predicted model and satellite observation errors are allowed
to remain smaller than the actual errors, but their ratio is
constrained to the actual ratio. As shown in Figure 2, the
spatial pattern of the predicted matched error ratio agrees
more closely with the actual error ratio, with slightly smaller
ratio values for some stations. A more quantitative analysis
shows the actual mean ratio of SMMR error to total error is
0.56 and the predicted mean error ratios for the unmatched
and matched error sets are 0.82 and 0.61, respectively (see
Table 1). A mean error ratio value of 0.56 indicates that the
model and SMMR errors are approximately equal, while the
unmatched error ratio value of 0.81 suggests a much smaller
predicted mean model error than SMMR error, meaning that
the data assimilation scheme would trust the model more
than the SMMR observation. The matched error ratio of
0.61 is in reasonably close agreement with the actual error
ratio, and suggests that the model errors are on average
slightly smaller than the SMMR error. Furthermore, the
predicted model errors have not been calibrated at individ-
ual sites, but have instead been match to the measured error
distribution for Eurasia. The spatial patterns of the predicted
errors for the satellite observations and model predictions
(and their ratios) have not been well represented in the
spatial pattern of the actual errors.
[23] A station by station error ratio comparison (Figure 3)

shows that both data assimilation error ratios have smaller
variations than the observed error ratio, but the ratios for the
matched case have slightly larger variations (0.4–1.0 for the
matched case and 0.7–1.0 for the unmatched case). More-
over, there is a more even spread of values around the one-
to-one relationship between actual and predicted error ratios

Table 1. Spatial Average of Different Error Componentsffiffiffiffi
R

p
, v/v

ffiffiffiffiffiffiffiffiffiffiffi
HPHt

p
, v/v R/(R + HPHt)

Observed 0.12 0.1 0.56
Predicted unmatched error 0.07 0.03 0.82
Predicted matched error 0.07 0.05 0.61
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in the matched case than for the unmatched case. The
following section discusses the implication for using both
the unmatched and matched errors in assimilation runs.

5. Data Assimilation Results

5.1. Spatial Pattern Comparisons

[24] The soil moisture estimate improvement through data
assimilation was assessed as the difference between the

mean absolute error in model predictions with and without
assimilation, for both the surface and root zone soil moisture
for each of the four seasons. Figure 4 shows the summer-
time assimilated soil moisture improvement for 1979–1987
for all stations. Blue areas indicate a reduction in soil
moisture estimate error through data assimilation while
orange areas indicate an increase in soil moisture estimate
error due to the data assimilation. Near zero values (within a

Figure 3. Station by station comparison of predicted (y axis) and actual (x axis) error ratios for matched
and unmatched errors. Diamonds in ovals are stations with a modeled and observed error ratio difference
of less than 0.05.
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range of �1 and 1% v/v) in gray indicate a negligible
impact from data assimilation on the soil moisture estimate.
Figure 4 shows more blue than orange areas, particularly for
root zone soil moisture, but is mixed with a lot of gray
areas.
[25] For a more quantitative analysis, Table 2 lists the

fraction and number (in brackets) of stations with improve-
ment, no change, and degradation for Figure 4. The analysis
shows that with unmatched error 46% (81 stations out of the
total of 176) of the stations had an improvement in surface
zone soil moisture and 39% (74 stations out of 176) of the
stations had an improvement in root zone soil moisture.
Using matched error the percentage of stations with an
improvement in surface zone soil moisture was unchanged
(47% verses 46%), but the percentage of stations showing
an overall root zone soil moisture improvement increased
from 39% to 57% (from 74 to 107 stations). However, there
was also an increase in the number of stations that had
degraded soil moisture, particularly in the root zone (from
40 to 60). The overall error improvement through data
assimilation for matched and unmatched errors is 0.5% v/v
(ranging from 0.45% v/v to 0.8% v/v).
[26] Figure 5 and Table 3 are similar to Figure 4 and

Table 2, except they only show results for the stations
which have a smaller climatological mean SMMR error
compared to the model error. In contrast to the results for
all stations, the unmatched error results show 78% of the
stations having an improvement in the surface zone soil
moisture estimate and 72% of the stations having an
improvement in the root zone soil moisture estimate.

With the matched error this increases to 83% of the stations
having an improvement in the surface zone soil moisture and
87% of the stations having an improvement in the root zone
soil moisture. For both matched and unmatched error cases,
only small fractions of the stations (ranging from 5% to 8%)
had degraded soil moisture as a result of the assimilation, with
the overall average soil moisture improvement increasing
from 0.5% v/v to around 3% v/v. The improvement increased
by a further 1% v/v (from 3% v/v to 4% v/v for surface soil
moisture and 2% v/v to 3% v/v for root zone soil moisture)
when using the matched error as compared to the unmatched
error. Spatial analysis of Figures 4 and 5 shows soil moisture
improvement through data assimilation for most stations in
Mongolia and Russia and a few stations in China; many
stations in China have wet biased SMMR observations. Also

Figure 4. Assimilated summertime soil moisture improvement (absolute model error minus absolute
assimilation error) in Eurasia for 1979–1987.

Table 2. Fraction and Number of Stations With Soil Moisture

Improvement Through Data Assimilation Using the Matched and

Unmatched Error Statistics During Summers of 1979–1987

DA Results Improved No Change Worse DA Improvement

Error difference >0.01 [�0.01,0.01] <0.01

Unmatched Error
Surface SM 0.46(81) 0.18(31) 0.36(64) 0.0045
Root zone SM 0.39(74) 0.40(75) 0.21(40) 0.0048

Matched Error
Surface SM 0.47(82) 0.15(27) 0.38(67) 0.0045
Root zone SM 0.57(107) 0.12(22) 0.32(60) 0.0080

Units are v/v, and values in parentheses are number of stations.
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note that uncertainty exists in these comparisons since the
model and SMMR derived soil moisture data at 25 km scales
for top 1–2 cm are compared with top 10 cm ground data at a
point.

5.2. Comparisons for All Stations

[27] Figure 6 shows the comparison of root-mean-square
error (RMSE) in modeled surface zone and root zone soil
moisture throughout Eurasia for the period of 1979–1987.
The RMSE was calculated from the difference between the
modeled and station measured soil moisture with and
without assimilation. The scatterplot for the matched error
shows a wider spread along the 1:1 line than for the
unmatched error case, confirming the earlier assertion that
smaller model error estimates in the unmatched case will
result in smaller updates to the predicted soil moisture.
Moreover, many Chinese stations show a data assimilation
improvement in root zone soil moisture with corresponding
degradation in surface zone soil moisture. Previous anal-
ysis of model results has shown that the CLSM simulates
a depressed vertical change of soil moisture in this
region, with a dry biased root zone soil moisture predic-
tion [Ni-Meister et al., 2005]. The assimilation of wet
biased surface soil moisture observations in this case was
able to improve the root zone soil moisture estimate
through data assimilation, while making the surface zone
soil moisture wet biased; this was due to the opposite
sign of the biases. However, root zone soil moisture
improvement adds significant value toward improved
seasonal climate prediction of precipitation through its
greater evapotranspiration feedback [Koster et al., 2004].

[28] To better analyze the impact of SMMR error on data
assimilation results, Figure 6 identifies the stations with
SMMR errors that were less than the model error when no
assimilation is performed. It can be seen that most of these
stations are located below the 1:1 line, indicating that data
assimilation has improved both the surface zone and root
zone soil moisture estimates for both matched and un-
matched cases when reliable satellite observations of sur-
face soil moisture are available.
[29] To better analyze the impact of using better matched

error ratio on the soil moisture estimates, Figure 7 compares
the RMSE of soil moisture estimate with and without data
assimilation for stations with the best match of the error
ratio to the actual error ratio. The stations shown in Figure 7
are those within ovals in Figure 3, being stations with an
error ratio difference of less than 0.05 between predicted
and actual values. In this case data assimilation is con-
strained to places where the errors predictions are closer to

Figure 5. As for Figure 4, but only for cases where the SMMR error is less than the model error.

Table 3. Same as Table 2 but Only for Cases When the SMMR

Error is Less Than the Model Error

DA Results Improved No Change Worse DA Improvement

Error difference >0.01 [�0.01, 0.01] <0.01

Unmatched Error
Surface SM 0.78(47) 0.13(8) 0.8(5) 0.03
Root zone SM 0.72(43) 0.23(14) 0.5(3) 0.02

Matched Error
Surface SM 0.83(50) 0.10(6) 0.7(4) 0.04
Root zone SM 0.87(52) 0.5(3) 0.8(5) 0.03
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the actual model and satellite observation error ratios;
ultimately this is how assimilation should be undertaken
everywhere. Figure 7 shows that in the case of the matched
errors (right panel) an improvement in soil moisture esti-
mates was achieved all of the time, whereas the unmatched
case made the results worse almost all of the time.
[30] Figure 8 shows a scatterplot of the surface and root

zone soil moisture improvement due to assimilation; sta-
tions with SMMR error smaller or larger than the model
error are differentiated. Most stations with small SMMR
errors are located in the upper right quadrant, indicating that
when satellite observation error is smaller than the model
error, data assimilation leads to reduced surface and root

zone soil moisture bias as well as reduced error. However,
when the SMMR mean error is greater or equal to the model
error, most stations are located in the lower left and lower
right quadrants, indicating that data assimilation typically
leads to an increase in soil moisture bias, particularly in the
surface soil moisture estimates; most of the stations in
China show degraded surface soil moisture estimates. As
discussed earlier, previous work has shown significant
SMMR-derived surface soil moisture bias in China. In this
case bias correction is required before the observations can
be rigorously used in the ensemble Kalman filter, since one
assumption of the Kalman filter is that both the model and
satellite observation errors are unbiased.

Figure 6. Summertime RMSE comparison of assimilated and modeled surface (stars) and root zone
(diamonds) soil moisture in Eurasia for the period of 1981–1987 for (left) unmatched error and (right)
matched error. Cases of SMMR error less than model error are in red and the rest in black. Data in the
lower triangle show an improvement.
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5.3. Individual Station Comparisons

[31] To investigate the temporal response of soil moisture
data assimilation, modeled soil moisture with and without
assimilation for both matched and unmatched error cases are
compared with satellite-derived and station-measured sur-
face zone and root zone soil moisture for two Russia
stations (Ogurtsovo from eastern Russia and Penza from
western Russia), one China station (Zhenzhou) and one
Mongolia station (Khalkhgol; see Figures 9–12). These
stations were chosen as representative examples of catch-
ments from these four regions.
[32] For the Ogurtsovo, Russia station comparison

(Figure 9), both the modeled surface and root zone soil
moisture underestimates the station data, while both the
assimilated surface and root zone soil moisture estimates
agree better with the station observations. In winter, there
are not enough SMMR measurements due to frozen and/or
snow covered soil, with the assimilated surface soil moisture
tracking the ground observations less closely then during
other times of the year. However, the results are still closer to
the observations compared to the model results without
assimilation, but not so wet as the ground observations; the
ground observations show very high wintertime surface soil
moisture values. For root zone soil moisture estimates, both
assimilated soil moisture cases agree well with the station
measurements, with poorer results obvious during wintertime
when there are no observations available for assimilation. The
SMMR data agree well with the ground measurements at this
station.
[33] For the Penza, Russia station comparison (Figure 10),

the model overestimates both the surface and root zone soil
moisture compared to the station measurements. SMMR-
derived surface soil moisture are closer to the ground obser-
vations and assimilating SMMR data into the catchment
model results in better surface zone and root zone soil
moistures agreement with the ground observations. The
results from the matched error case show a slightly better
agreement with the surface soil moisture measurements and
the results from the unmatched error case show a better
agreement with the root zone soil moisture measurements.
Assimilating the SMMR data has also led to a larger temporal

variation of surface soil moisture estimates than model
estimates.
[34] For the Zhenshou, China station comparison, SMMR

derived surface soil moisture overestimates ground obser-
vations, leading to the overestimation of surface soil mois-
ture after assimilation. However, the model underestimates
the root zone soil moisture, and assimilation helps bring the
underestimated soil moisture up to the observed values,
resulting in a somewhat better agreement with the station
observations. Moreover, the assimilated root zone soil
moisture from the matched error case does not show a
better agreement with the station measurements than the
ones with the unmatched error.
[35] For the Khalkhgol, Mongolia station comparison,

Figure 12 shows the model underestimates both the surface
zone and root zone soil moisture comparing to the ground
measurements while the SMMR data match the ground
measurements reasonably well. Both assimilated surface
and root zone soil moisture show good ground measurement
agreement. Again the assimilated surface and root zone soil
moisture with the matched error agree better with the
ground measurements than the unmatched case. Improve-
ment in surface soil moisture estimate through assimilation
also led to the improvement of root zone soil moisture
estimate.

6. Discussion and Conclusions

[36] A SMMR derived surface soil moisture product has
been assimilated into the GMAO CLSM using an ensemble
Kalman filter. The Kalman filter corrects model-generated
soil moisture toward the satellite observation, with the size
of the correction dependent upon the relative magnitudes of
the satellite observation and model errors. Satellite obser-
vation error estimates provided with the soil moisture
product were estimated as a function of vegetation optical
depth (average 7% v/v), but these were shown to underes-
timate the true error in the SMMR derived soil moisture
(average 12% v/v). Moreover, two types of predicted model
error estimates were tested. The first used unmatched errors
based on model error parameter values from Reichle et al.
[2002b]. In this case the predicted model error estimates

Figure 7. RMSE comparison of assimilated and modeled surface (stars) and root zone (diamonds) soil
moisture in Eurasia for the period of 1981–1987 for locations where the modeled and observed error
ratio difference was less than 0.05 (the diamonds in ovals shown in Figure 3).
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were too small (average 3% v/v) relative to the actual error
in model predicted soil moisture (average 10% v/v). The
second used matched errors based on model error parame-
ters that gave the best agreement of SMMR error to total
error (model error plus SMMR error) ratio with the actual
error ratio. In this case the resultant model and SMMR error
magnitudes were approximately equal on average. The data

assimilation results from both cases were then compared
with ground observations.
[37] It has been shown that with the matched error, data

assimilation provided more accurate root zone soil moisture
estimates for 57% of stations as compared to 39% of
stations with the unmatched error. This improvement in
root zone soil moisture estimates has great implications for

Figure 8. Comparison of surface and root zone soil moisture bias improvement in Eurasia for the period
of 1981–1987. The stations with an average SMMR error less than model error are shown by diamonds;
all other stations are shown by stars. Data located in the top right-hand quadrant show an improvement in
both the surface and root zone soil moisture estimates.
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seasonal climate prediction improvement, since better
knowledge on root zone soil moisture is more important
than surface zone soil in terms of land surface–atmosphere
interactions. Moreover, these results highlight the need for

accurate model and observation error estimates. Analysis of
the impact of SMMR error on the assimilation results
showed that when the climatologic mean SMMR error
was less than the model error, the data assimilation

Figure 9. Comparison of (top) assimilated and modeled surface and (bottom) root zone soil moisture
with station measurements and SMMR observations at Penza in Russia for the period of 1979–1985.
Black stars are station measurements, black lines are modeled soil moisture, blue diamonds are SMMR
observations, red lines are assimilated soil moisture with unmatched error, and blue lines are assimilated
soil moisture with matched error.

Figure 10. As for Figure 9 but for Ogurtsovo, Russia.
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improved both surface zone and root zone soil moisture
estimates, with the greatest improvement being in the root
zone. Moreover, the overall accuracy improvement of both
surface and root zone soil moisture estimates increased from
less than 0.9% v/v to approximately 3% v/v, indicating that
good quality satellite products are required to ensure sig-

nificant improvement in both surface zone and root zone
soil moisture estimates over large regions. Additionally,
most Mongolia and Russia stations showed soil moisture
improvement as a result of data assimilation, while most
China stations resulted in biased surface soil moisture
estimates as a result of wet biased SMMR observations in

Figure 11. As for Figure 9 but for Zhenzhou, China for the period of 1981–1987.

Figure 12. As for Figure 9 but for Khalkhgol, Mongolia.
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that region. This indicates that bias must be removed
before assimilation to ensure improvement in soil mois-
ture estimates.
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